187 research outputs found

    Common DNA methylation dynamics in endometriod adenocarcinoma and glioblastoma suggest universal epigenomic alterations in tumorigenesis

    Get PDF
    Trends in altered DNA methylation have been defined across human cancers, revealing global loss of methylation (hypomethylation) and focal gain of methylation (hypermethylation) as frequent cancer hallmarks. Although many cancers share these trends, little is known about the specific differences in DNA methylation changes across cancer types, particularly outside of promoters. Here, we present a comprehensive comparison of DNA methylation changes between two distinct cancers, endometrioid adenocarcinoma (EAC) and glioblastoma multiforme (GBM), to elucidate common rules of methylation dysregulation and changes unique to cancers derived from specific cells. Both cancers exhibit significant changes in methylation over regulatory elements. Notably, hypermethylated enhancers within EAC samples contain several transcription factor binding site clusters with enriched disease ontology terms highlighting uterine function, while hypermethylated enhancers in GBM are found to overlap active enhancer marks in adult brain. These findings suggest that loss of original cellular identity may be a shared step in tumorigenesis

    Soluble inflammatory mediators induce transcriptional re-organization that is independent of dna methylation changes in cultured human chorionic villous trophoblasts.

    Get PDF
    The studies proposed here were undertaken to test the hypothesis that, under specific circumstances (e.g., a strong enough inflammatory stimulus), genes that are repressed at the maternal-fetal interface via DNA methylation might be de-methylated, allowing either a maternal immune response to the semi-allogenic fetus or the onset of early labor. Chorionic trophoblasts (CT) were isolated from fetal membranes, followed by incubation with medium from LPS-activated PBMC or resting PBMC medium for 2 h. RNA and DNA were isolated from the cells for RNA-seq and DNA methylation studies. Two hrs after being exposed to conditioned medium from LPS-activated PBMC, CT showed differential expression of 114 genes, all but 2 of which showed higher expression in the stimulated cells than is the unstimulated cells. We also identified 318 differentially methylated regions (DMRs) that associated with 306 genes (155 protein coding genes) in the two groups, but the observed methylation changes had negligible impact on the observed transcriptional changes in CT. CT display complex patterns of transcription in response to inflammation. DNA methylation does not appear to be an important regulator of the observed transcriptional changes

    Site-1 protease is essential for endochondral bone formation in mice

    Get PDF
    Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1Pcko). S1Pcko mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1Pcko mice. Extraction of type II collagen is substantially lower from S1Pcko cartilage. In S1Pcko mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1Pcko chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification

    DeepH&M: Estimating single-CpG hydroxymethylation and methylation levels from enrichment and restriction enzyme sequencing methods

    Get PDF
    Increased appreciation of 5-hydroxymethylcytosine (5hmC) as a stable epigenetic mark, which defines cell identity and disease progress, has engendered a need for cost-effective, but high-resolution, 5hmC mapping technology. Current enrichment-based technologies provide cheap but low-resolution and relative enrichment of 5hmC levels, while single-base resolution methods can be prohibitively expensive to scale up to large experiments. To address this problem, we developed a deep learning-based method, DeepH&M, which integrates enrichment and restriction enzyme sequencing methods to simultaneously estimate absolute hydroxymethylation and methylation levels at single-CpG resolution. Using 7-week-old mouse cerebellum data for training the DeepH&M model, we demonstrated that the 5hmC and 5mC levels predicted by DeepH&M were in high concordance with whole-genome bisulfite-based approaches. The DeepH&M model can be applied to 7-week-old frontal cortex and 79-week-old cerebellum, revealing the robust generalizability of this method to other tissues from various biological time points

    Investigation of CYP1B1 mutations in Chinese patients with primary congenital glaucoma

    Get PDF
    Purpose: This study was conducted to investigate the mutation spectrum of the cytochrome P450 gene (CYP1B1) in Chinese patients with primary congenital glaucoma (PCG). Methods: The coding regions of CYP1B1 from 41 Chinese PCG patients were analyzed using polymerase chain reaction (PCR) and heteroduplex analysis-single strand conformation polymorphism (HA-SSCP) followed by subsequent cloning and bidirectional sequencing. New variants were confirmed by restriction fragment length polymorphism (RFLP) analysis in 80 normal Chinese controls. Results: Six distinct mutations, four of which are novel, were identified in 14.6 % (6/41) of all patients. The CYP1B1 mutations in two patients were homozygous, and the other four patients were compound heterozygous. Beyond the four novel mutations (g.4531_4552del22bp, g.4633delC, p.S336Y, and p.I471S), two reported missense mutations (R469W and R390H) were also identified. The missense mutation, R390H, was involved in 9.8 % (4/41) of patients in our study. None of the novel mutations was observed in any of the 80 controls. Conclusions: Our results support the premise that CYP1B1 is a major gene for PCG, appearing to be responsible for the disease in roughly one in six Chinese PCG patients. The R390H mutation was identified as a predominant CYP1B1 allele among the Chinese PCG patients in our study. This observation emphasizes the importance of mutational screening of CYP1B1, especially for the R390H mutation in Chinese patients

    Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    Get PDF
    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome

    The ATP-Dependent Protease ClpP Inhibits Biofilm Formation by Regulating Agr and Cell Wall Hydrolase Sle1 in Staphylococcus aureus

    Get PDF
    Biofilm causes hospital-associated infections on indwelling medical devices. In Staphylococcus aureus, Biofilm formation is controlled by intricately coordinated network of regulating systems, of which the ATP-dependent protease ClpP shows an inhibitory effect. Here, we demonstrate that the inhibitory effect of ClpP on biofilm formation is through Agr and the cell wall hydrolase Sle1. Biofilm formed by clpP mutant consists of proteins and extracellular DNA (eDNA). The increase of the protein was, at least in part, due to the reduced protease activity of the mutant, which was caused by the decreased activity of agr. On the other hand, the increase of eDNA was due to increased cell lysis caused by the higher level of Sle1. Indeed, as compared with wild type, the clpP mutant excreted an increased level of eDNA, and showed higher sensitivity to Triton-induced autolysis. The deletion of sle1 in the clpP mutant decreased the biofilm formation, the level of eDNA, and the Triton-induced autolysis to wild-type levels. Despite the increased biofilm formation capability, however, the clpP mutant showed significantly reduced virulence in a murine model of subcutaneous foreign body infection, indicating that the increased biofilm formation capability cannot compensate for the intrinsic functions of ClpP during infection
    • …
    corecore