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G E N E T I C S

DeepH&M: Estimating single-CpG hydroxymethylation 
and methylation levels from enrichment and restriction 
enzyme sequencing methods
Yu He1,2*, Hyo Sik Jang1,2*, Xiaoyun Xing1,2, Daofeng Li1,2, Michael J. Vasek1,3,  
Joseph D. Dougherty1,3, Ting Wang1,2,4†

Increased appreciation of 5-hydroxymethylcytosine (5hmC) as a stable epigenetic mark, which defines cell id entity 
and disease progress, has engendered a need for cost-effective, but high-resolution, 5hmC mapping technology. 
Current enrichment-based technologies provide cheap but low-resolution and relative enrichment of 5hmC 
levels, while single-base resolution methods can be prohibitively expensive to scale up to large experiments. 
To address this problem, we developed a deep learning–based method, “DeepH&M,” which integrates enrich-
ment and restriction enzyme sequencing methods to simultaneously estimate absolute hydroxymethylation 
and methylation levels at single-CpG resolution. Using 7-week-old mouse cerebellum data for training the 
DeepH&M model, we demonstrated that the 5hmC and 5mC levels predicted by DeepH&M were in high con-
cordance with whole-genome bisulfite–based approaches. The DeepH&M model can be applied to 7-week-old 
frontal cortex and 79-week-old cerebellum, revealing the robust generalizability of this method to other tissues 
from various biological time points.

INTRODUCTION
A single genome can derive phenotypically unique cell types through 
various epigenetic modifications that instruct specific gene expres-
sion patterns (1, 2). DNA modifications, such as methylation of five 
positions of cytosines (5mC) at the CpG dinucleotide context, play a 
vital role in gene regulation, genomic imprinting, X-chromosome 
inactivation, and repression of transposable elements (3–6). The re-
cent discovery that Ten-eleven translocation (TET) oxidase proteins 
can oxidize 5mC to 5-hydroxymethylcytosine (5hmC) has spurred 
an effort at characterizing the landscape of 5hmC in normal and dis-
eased tissues and deciphering its potential functional role in gene 
regulation (7–12). Genome-wide profiling of 5hmC has found that 
5hmC is not only just an intermediate product of the active DNA 
demethylation process but also a stable epigenetic mark correlated 
with gene expression. 5hmC abundance varies considerably across 
different tissues (13). 5hmC is present as high as 40% of 5mC levels 
in Purkinje neurons (14) and 5% of 5mC levels in embryonic stem 
cells (15), and is low (less than 1% of 5mC level) in other cell types 
(16). 5hmC is enriched in promoters, gene bodies, and enhancers; 
5hmC levels in promoters and gene bodies are positively correlated 
with gene expression (16–18). 5hmC levels in enhancers are often 
cell type specific and are positively correlated with active enhancer 
histone marks, such as H3K4me1 and H3K27ac (19). However, the 
molecular mechanism by which 5hmC might regulate the genome 
has yet to be fully elucidated (20).

Rapid technological innovations for mapping 5mC have cemented 
5mC as a crucial epigenetic mark for cell fate. Technologies for map-
ping 5mC include bisulfite conversion of unmethylated cytosine to 

uracil, such as whole-genome bisulfite sequencing (WGBS); enrichment 
of methylated DNA using methylcytosine-specific antibodies, such 
as methylated DNA immunoprecipitation sequencing (MeDIP-seq); 
and enrichment of unmethylated regions using methylation-sensitive 
restriction enzymes, such as methylation-sensitive restriction enzyme 
sequencing (MRE-seq) (21). The gold standard method WGBS can 
measure methylation genome-wide at single-base resolution but re-
quires high coverage of the genome (at least 10× coverage for each 
cytosine) and therefore can be 10 times more expensive than enrichment 
or restriction enzyme sequencing methods (22). MeDIP-seq enriches for 
methylated regions but has low resolution [~150 base pairs (bp)] (23, 24). 
MRE-seq provides CpG resolution, but can only interrogate methylation 
status at restriction enzyme sites (~30% of the genome) (24).

Similarly, 5hmC profiling technologies advanced from immuno-
precipitation/enrichment-based methods to whole-genome single- 
base resolution. Because WGBS cannot distinguish 5hmC from 5mC, 
Yu et al. developed a method called TET-assisted bisulfite sequenc-
ing (TAB-seq), where 5hmCs are first protected by glucosylation and 
then 5mC is completely oxidized to 5caC with TET enzyme (18). 
The following bisulfite treatment can reveal which CpGs are pro-
tected and infer hydroxymethylation levels. TAB-seq can measure 
genome-wide 5hmC at single-base resolution but requires very high 
coverage to confidently call 5hmC at all cytosines. For example, for 
5% 5hmC, based on binomial test with a probability of 2.22% for 
5mC nonconversion rate, a coverage of 120 is required to call 5hmC 
at 95% confidence level (see Materials and Methods). The study from 
Yu et al. could only confidently call 20% or higher 5hmC at an aver-
age coverage of 27. Often in TAB-seq experiments, both WGBS and 
TAB-seq libraries are deeply sequenced to parse out 5mC and 5hmC 
levels in a single sample. Achieving high-confidence, single-base res-
olution of 5hmC can be a heavy financial strain for large experimen-
tal designs due to the necessary sequencing depth. Therefore, many 
adopted the cheaper alternative of using antibody-based enrichment 
method, such as hydroxymethylated DNA immunoprecipitation 
sequencing (hMeDIP-seq), which can reveal hydroxymethylated 
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regions with limited sensitivity (17). hMeDIP-seq can also provide 
relative hydroxymethylation over controls, but at the cost of low 
resolution. Similar to antibody-based enrichment methods such as 
hMeDIP-seq, hmC-Seal chemically tags hydroxymethylated cytosine 
and enriches hydroxymethylated regions by pulling down tagged 5hmC 
(16, 19). hmC-Seal can pull down regions with extremely low 5hmc 
content and, thus, have higher sensitivity than hMeDIP-seq.

Because of the high cost of single-base resolution profiling methods 
for 5hmC and 5mC, several computational methods were developed 
to estimate 5hmC and 5mC at single-base resolution. Xiao et al. de-
veloped a random forest regression–based method MeSiC (prediction 
from MeDIP-seq data at single-CpG resolution) to estimate single- CpG 
5mC from MeDIP-seq data (25). Stevens et al. took advantage of the com-
plementary properties of MeDIP-seq and MRE-seq and developed a con-
ditional random field–based algorithm methylCRF to effectively predict 
single- CpG 5mC from MeDIP-seq and MRE-seq data (26). However, 
the two aforementioned algorithms cannot predict 5hmC levels. 
Pavlovic et al. developed a support vector machine (SVM)/random 
forest–based method DIRECTION to predict single- CpG 5mC or 5hmC 
from histone modification and transcription factor chromatin im-
munoprecipitation sequencing (ChIP-seq) data (27). This method can 
only predict binary values, either high or low 5mC/5hmC, but not the 
absolute quantitative level. To address these limitations, we devel-
oped a deep learning–based method, DeepH&M, which integrates 
enrichment and restriction enzyme sequencing methods to estimate 
absolute single- CpG resolution hydroxymethylation and methylation 
levels simultaneously.

RESULTS
Description of DeepH&M model
To estimate single-CpG hydroxymethylation and methylation, we de-
veloped a deep learning–based algorithm, DeepH&M, to integrate 

MeDIP-seq, MRE-seq, and hmC-Seal data (Fig. 1A). The core of 
DeepH&M is to model the relationship between MeDIP-seq/MRE-
seq/hmC-Seal data and TAB-seq/WGBS data using deep learning 
networks. The relationship between MeDIP-seq/MRE-seq data and 
WGBS data was well characterized previously in a conditional ran-
dom field–based algorithm, methylCRF, which was used to integrate 
MeDIP-seq and MRE-seq data to predict absolute methylation levels 
at single-CpG resolution (26). hmC-Seal data are positively correlated 
with TAB-seq data, while MeDIP-seq and MRE-seq data present a 
complex relationship with TAB-seq data (fig. S1A). The DeepH&M 
model is composed of three modules: a regular neural network–based 
CpG module, a convolutional neural network–based DNA module, 
and a regular neural network–based joint module (Fig. 1B). The in-
puts for the CpG module are genomic features and methylation fea-
tures (table S1) for each CpG. Genomic features include GC percent, 
CpG density, and distance to the nearest CpG island (CGI). Meth-
ylation features include MeDIP-seq, MRE-seq, and hmC-Seal signal. 
Because CpG in proximity tends to have similar 5hmC and 5mC 
levels (fig. S1B), we also include average signal for the above features 
in neighboring windows around the target CpG. The DNA module 
takes DNA sequence around a CpG as inputs and uses convolutional 
neural network to extract information from the DNA sequence. The 
joint module combines outputs from the CpG module and DNA 
module and predicts 5hmC and 5mC levels simultaneously.

Benchmarking DeepH&M model
To examine the performance of DeepH&M, we generated WGBS, 
TAB-seq, MeDIP-seq, MRE-seq, and hmC-Seal data for 7-week-old 
mouse cerebellum and trained DeepH&M model with these data-
sets. Because DeepH&M requires 5hmC and 5mC as the labels, we 
used a statistical method MLML (maximum likelihood methylation levels) 
(28) to integrate TAB-seq and WGBS data to get consistent 5hmC, 
5mC, and total methylation. MLML can prevent obtaining negative 

Fig. 1. DeepH&M model. (A) Schematic explanations for the three main assays used for the DeepH&M model. (B) Structure of the DeepH&M model. DeepH&M is com-
posed of three modules. CpG module takes inputs of genomic features and methylation features. DNA module processes raw DNA sequence data using a convolutional 
neural network. Joint module combines outputs from the CpG module and DNA module to predict 5hmC and 5mC simultaneously. Examples were given to show how 
5hmC and 5mC were predicted from the three main assays. Conv is convolutional layer. Pool is pooling layer. Full con is full connected layer.
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5mC values by subtracting TAB-seq data directly from the WGBS 
data and also prevent the contradiction of TAB-seq and WGBS data 
at some CpG sites. As a reference, we called 5hmC, 5mC, and total 
methylation derived from MLML as “gold standard” data and eval-
uated our predictions against them. However, we recognize that even 
the gold standard data might not represent the true hydroxymethylation 
and methylation levels of a sample due to intrinsic limitations of pro-
filing methods as described previously (29, 30).

Our predicted 5hmC, 5mC, and total methylation levels are in high 
concordance with gold standard results. DeepH&M recapitulates 
the distribution of gold standard 5hmC, 5mC, and total methylation 
(Fig. 2, A and B). The genome-wide correlation across our predic-
tions and gold standard data for 5hmC, 5mC, and total methylation 
is 0.8, 0.85, and 0.85, respectively (Fig. 2A). Using a previously de-
veloped concordance metric (defined as the percentage of CpGs with 
a methylation proportion difference less than 0.1 or 0.25) (31), 5hmC 
predictions are 86% concordant with gold standard data within 
0.1 difference, 5mC predictions are 90% concordant within 0.25 differ-
ence, and total methylation predictions are 91% concordant within 
0.25 difference. To examine whether the concordance is high only 
at particular 5hmC/5mC/total methylation levels, we examined the 
concordance at differing 5hmC/5mC/total methylation windows 
(Fig. 2C). 5hmC concordance is over 80% for 5hmC levels less than 
0.4, and 45% for 5hmC levels higher than 0.4. We report that less 
than 1% of the CpGs in mouse cerebellum have 5hmC levels higher 
than 0.4. One explanation for the low concordance could be the pau-
city of high hmC CpGs in the training set (2 million CpGs); thus, 
DeepH&M might have difficultly learning the rules for high 5hmC 
CpGs. The concordance for 5mC is relatively lower for 5mC at the 
0.2 to 0.4 window, and the concordance for total methylation is low 
for total methylation at the 0.2 to 0.6 window. This may be due to 
the difficulty in predicting intermediate methylation, as the problem 
also existed in predictions by methylCRF (26). The high concordance 
can be appreciated in the WashU Epigenome browser view of the 
Slc22a17 and Efs locus, where 5hmC, 5mC, and total methylation 
levels of predicted and gold standard data are visualized (Fig. 2D). 
Furthermore, as a positive control for evaluating our predictions 
against gold standard data, we examined the concordance of two 
7-week-old cerebellum replicates (fig. S2). The genome-wide correla-
tion for 5hmC, 5mC, and total methylation between the two repli-
cates is 0.82, 0.89, and 0.91, respectively, and the concordance is 88, 
92, and 94%, respectively. The concordance of our predictions with 
gold standard data is very close to the concordance of the two repli-
cates. These results confirm that DeepH&M can estimate single- 
CpG hydroxymethylation and methylation with high accuracy.

Because it has been shown that 5hmC is enriched at enhancers 
and 5hmC levels at the gene body are positively correlated with 
gene expression (16–18), we investigated whether our 5hmC pre-
dictions can reveal these relationships. To examine the enrichment 
of 5hmC in genomic features, we divided CpGs into four categories 
based on their 5hmC levels and calculated the enrichment fold of 
the four CpG categories in genomic features. We found that the en-
richment of DeepH&M-predicted 5hmC in genomic features was sim-
ilar to that of gold standard 5hmC (fig. S3A). CpGs with high 5hmC 
levels by predictions or gold standard data were highly enriched for 
enhancers and depleted for promoters. To examine the relationship 
between 5hmC and gene expression, we grouped genes into four cat-
egories based on expression levels and profiled average 5hmC levels 
at the gene body of the four categories of genes. We observed that 

similar to the gold standard 5hmC, the predicted 5hmC levels were 
positively correlated with gene expression (fig. S3B).

Factors affecting DeepH&M performance
Next, we wanted to investigate factors that may affect DeepH&M’s 
performance. First, we examined DeepH&M’s performance across 
different genomic features, as DNA methylation and hydroxymeth-
ylation were known to be highly nonrandom across the genome. 
The concordance is over 93% at CGIs and promoters for 5hmC and 
5mC (Fig. 3A). The concordance for other genomic features is over 
80% for 5hmC and over 87% for 5mC. Because most CGIs are lowly 
methylated and only a small portion of CGIs are highly methylated, 
we wanted to see whether DeepH&M can distinguish highly meth-
ylated CGIs from lowly methylated CGIs. We divided CGIs into 
lowly methylated CGI and highly methylated CGIs based on total meth-
ylation levels and then examined the concordance of predictions 
and gold standard data in these two types of CGIs. At lowly methyl-
ated CGIs, the concordance for 5hmC and 5mC is 99.9 and 99.8%, 
respectively (Fig. 3B). At highly methylated CGIs, the concordance 
for 5hmC and 5mC is 95 and 98%, respectively. These results indi-
cate that DeepH&M’s predictions are determined by experimental 
data instead of a learned assumption that all CGIs are lowly methyl-
ated. Second, because the accuracy of methylation levels from TAB-seq 
and WGBS data is substantially influenced by sequencing coverage, 
we examined DeepH&M’s performance across differing CpG cov-
erage from TAB-seq and WGBS data. The concordance for 5hmC 
and 5mC increases steadily from less than 10× coverage to over 10× 
coverage (85 to 88% for 5hmC, 78 to 89% for 5mC) (Fig. 3C). Thus, 
the lower concordance at lower coverage is likely a consequence of 
lower confidence in gold standard data, underscoring the robustness 
of our algorithm. Third, we examined DeepH&M’s performance 
across regions with differing CpG density, as CpG density is a con-
founding factor for our enrichment-based sequencing methods, 
MeDIP-seq and hmC-Seal, which do not work optimally for regions 
with low CpG density. We observed increasing concordance for 
5hmC and 5mC with increasing CpG density. Note that the concor-
dance was greater than 0.8 even at the lowest CpG density; it in-
creased to over 88% (5hmC) and 92% (5mC) for high CpG density 
regions that most of the current investigations focus on (Fig. 3D).

Generalizability of DeepH&M model to explore 
hydroxymethylation and methylation dynamics
Last, we wanted to test whether the DeepH&M model, trained on 
data from 7-week-old mouse cerebellum, can be generalized to data of 
other samples. This includes whether DeepH&M can predict differ-
entially hydroxymethylated regions (DHMRs) and differentially methyl-
ated regions (DMRs) between two samples. We generated WGBS, 
TAB-seq, MeDIP-seq, MRE-seq, and hmC-Seal data for 79-week-old 
mouse cerebellum as we wanted to explore 5hmC changes during 
aging. Using the DeepH&M model from 7-week-old mouse cerebel-
lum, we predicted 5hmC and 5mC for 79-week-old mouse cerebel-
lum. We performed similar concordance analysis between predictions 
and gold standard data for 79-week-old mouse cerebellum. The over-
all performance of the DeepH&M model in 79-week-old mouse 
cerebellum is similarly high as that in 7-week-old mouse cerebellum 
(Fig. 4, A to C). The genome-wide correlation for 5hmC, 5mC, and 
total methylation between predictions and gold standard data is 
0.81, 0.86, and 0.86, respectively, and the concordance is 84, 91, and 
92%, respectively. As illustrated by the WashU Epigenome browser 

 on O
ctober 7, 2020

http://advances.sciencem
ag.org/

D
ow

nloaded from
 



He et al., Sci. Adv. 2020; 6 : eaba0521     1 July 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 11

view, there is high concordance between DeepH&M prediction and 
gold standard data across 5hmC, 5mC, and total methylation levels 
in the 5′ untranslated region (5′UTR) and first exon of the Kcnd2 
gene (Fig. 4D).

Recent research suggests that epigenetic mechanisms, DNA methyl-
ation in particular, play a central role in the aging process (32). Using 
antibody-based methods to quantify 5hmC levels, several studies 
reported global levels of 5hmC increase in mouse cerebellum during 

Fig. 2. Performance of the DeepH&M model in 7-week-old mouse cerebellum. (A) Density plots of predictions and gold standard data for 5hmC, 5mC, and total 
methylation. Pearson correlation coefficient is used as correlation metric. (B) Global distribution comparison of predictions and gold standard data for 5hmC, 5mC, and 
total methylation. (C) Concordance between predictions and gold standard data for 5hmC, 5mC, and total methylation at CpGs with differing 5hmC/5mC/total methylation 
levels. For 5hmC, 0.1 difference is used to calculate concordance. For 5mC and total methylation, 0.25 difference is used. Concordance for five ascending 5hmC windows 
and five ascending 5mC/total methylation windows is calculated to see how concordance distributes in differing 5hmC/5mC/total methylation levels. (D) Genome brows-
er view of predictions and gold standard data for 7-week-old cerebellum at a representative locus.
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aging but remain stable in mouse hippocampus (33, 34). Furthermore, 
a recent study used single-base resolution sequencing method [oxidative- 
bisulfite sequencing (oxBS-seq)] to measure 5hmC at single sites in 
mouse hippocampus and found no global 5hmC changes (35). How-
ever, because of low sequencing depth (2×), the study only examined 
5hmC changes at the chromosome level and genomic element level, 
such as CGIs and promoters, and could not provide single-base res-
olution 5hmC dynamics at local regions.

In this study, we explored whether DeepH&M could reveal how 
5hmC changes globally and locally in mouse cerebellum during 
aging. We report that global 5hmC levels increase by 20% from 7 to 
79 weeks and that global 5mC levels do not change (table S2). Next, 
we examined whether there are 5hmC and 5mC changes in specific 
regions during aging by calling DHMRs and DMRs. First, we iden-
tified 524 DHMRs between hmC-Seal data of 7- and 79-week-old 
mouse cerebella using DiffBind (36). We wanted to see whether 5hmC 
changes in these DHMRs are similar between predictions and gold 
standard data. The hyperDHMRs have significantly higher 5hmC 
in both gold standard data and predictions, and hypoDHMRs have 
significantly lower 5hmC in both gold standard data and predic-
tions (Fig. 5A). Thus, both gold standard data and DeepH&M pre-
dictions support DHMRs defined by hmC-Seal data. Second, we 
defined DHMRs and DMRs by comparing TAB-seq and WGBS data 
between 7- and 79-week-old cerebella using the tool DSS (37). We 
examined whether these DHMRs/DMRs are supported by Deep-
H&M data. The differences predicted by DeepH&M are highly sig-
nificant, and they are concordant with differences defined by gold 

standard data, although the overall magnitude tends to be smaller 
(Fig. 5, B and C).

We also examined enrichment of biological processes for these 
DHMRs and DMRs using Genomic Regions Enrichment of Anno-
tations Tool (GREAT) (38). We report that hyperDHMRs are en-
riched near genes that regulate synaptic plasticity and transporter 
activity (fig. S4A) and that hyperDMRs are enriched in genes re-
sponsible for neuron axonogenesis (fig. S4B). There were no signifi-
cantly enriched terms associated with hypoDMRs and hypoDHMRs, 
possibly due to the small number of hypoDMRs and hypoDHMRs. 
As an example, Fig. 4D illustrates one of the numerous DHMRs be-
tween 7- and 79-week-old cerebella. The 5hmC changes at this re-
gion are supported by changes of gold standard 5hmC, predicted 
5hmC, and hmC-Seal signal between the two ages. These results 
suggest that DeepH&M can predict DHMRs and DMRs between 
two samples.

The above analysis demonstrates that the DeepH&M model, 
trained on data from 7-week-old mouse cerebellum, can be generalized 
to 79-week-old mouse cerebellum. We wanted to examine whether 
our DeepH&M model can be also generalized to 7-week-old mouse 
cortex as 5hmC levels in the cortex are much higher than that in the 
cerebellum. We found that the overall performance of the DeepH&M 
model for 5hmC is a little lower in the cortex than in the cerebellum 
(concordance: 72% versus 86%), and the performance for 5mC and 
total methylation is similar to cerebellum (Fig. 6, A to C). The 
genome-wide correlation for 5hmC, 5mC, and total methylation 
between predictions and gold standard data is 0.65, 0.82, and 0.89, 

Fig. 3. Factors affecting concordance between gold standard data and predictions. (A) Concordance for 5hmC/5mC/total methylation at different genomic features. 
(B) Comparison of gold standard 5hmC/5mC and predicted 5hmC/5mC at lowly methylated CGIs and highly methylated CGIs. CGIs are divided into lowly methylated CGIs 
(<0.2) and highly methylated CGIs (>0.7) based on their average total methylation levels. (C) Concordance for 5hmC/5mC/total methylation as a function of CpG coverage. 
For 5hmC concordance, CpG coverage is from TAB-seq data. For 5mC/total methylation concordance, CpG coverage is from WGBS data. (D) Concordance for 5hmC/5mC/
total methylation as a function of CpG density.
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Fig. 4. Performance of the DeepH&M model in 79-week-old mouse cerebellum. (A) Density plots of predictions and gold standard data for 5hmC, 5mC, and total methylation. 
(B) Global distribution comparison of predictions and gold standard data for 5hmC, 5mC, and total methylation. (C) Concordance between predictions and gold standard data for 5hmC, 
5mC, and total methylation at CpGs with differing 5hmC/5mC/total methylation levels. (D) Genome browser view of a DHMR between 7- and 79-week-old cerebella. The selected 
box is the DHMR. The 5hmC changes at this region are supported by changes of gold standard 5hmC, predicted 5hmC, and also hmC-Seal signal between the two ages.
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respectively, and the concordance is 72, 89, and 92%, respectively. 
We can see that 5hmC distribution in the cortex is distinct from 
that in the cerebellum (Fig. 2B versus Fig. 6B), and the mean 5hmC 
level in the cortex is almost twice as high as that in the cerebellum 
(0.19 versus 0.11). DeepH&M can still recapitulate the distribution 
of gold standard 5hmC and 5mC and total methylation. These re-
sults suggest that the DeepH&M model trained from cerebellum is 
not only generalizable to other cerebellum samples at different ages 
but also generalizable to adult frontal cortex. We also applied our 
DeepH&M model to mouse fetal cortex, which has much lower 
global 5hmC levels than adult cortex. The genome-wide correlation 
for 5hmC, 5mC, and total methylation between predictions and gold 

standard data provided in Lister et al. (39) is 0.44, 0.63, and 0.65, 
respectively, and the concordance is 61, 84, and 94%, respectively 
(fig. S5). The extremely low concordance for 5hmC in the fetal cor-
tex may be explained by the rather big global differences in 5hmC 
distribution in adult and fetal cortices.

DISCUSSION
5hmC is known to be an intermediate, but stable, epigenetic feature 
of the active DNA demethylation process. However, the molecular 
mechanisms underlying the role of 5hmC in gene regulation remain 
largely unknown. Furthermore, the loss of 5hmC has been identi-
fied as a hallmark of most types of human cancers. Many cancers 
are characterized by down-regulation of or deleterious mutations in 
TET or isocitrate dehydrogenase IDH1/IDH2 (cofactors of TET en-
zymes) genes, which reduces the rate of oxidization of 5mC into 
5hmC (8, 10, 11). Note that many of these studies use hMeDIP-seq 
technology to profile tumor and matched-tumor samples; therefore, 
there is a lack of high-resolution hydroxymethylomes of tumors.

Understanding the mechanisms underlying 5hmC’s roles in de-
velopment and tumorigenesis can benefit from profiling 5hmC levels 
at genome-wide, single-base resolution. As shown in Wen et al. (40), 
high-resolution 5hmC profiling of the human brain revealed intriguing 
5hmC signatures, such as high hydroxymethylation levels near 5’ 
splicing sites and transcription-correlated hmC levels on the sense 
strand of the gene, that hMeDIP-seq would not be able to detect due to 
inherent limitations of the technology. Identifying these novel sig-
natures could hold the key in deciphering the biological machineries 
that 5hmC could potentiate. Currently, TAB-seq and oxBS-seq are 
the gold standard methods for providing single-CpG resolution DNA 
hydroxymethylomes (18, 41). These two methods require very high 
coverage to confidently call 5hmC at all cytosines. The coverage 
required for oxBS-seq is even higher due to the fact that oxBS-seq 
measures 5hmC indirectly through subtracting measured 5mC 
from measured total methylation. The high cost associated with the 
high coverage is a substantial financial barrier for individual laborato-
ries to adopt TAB-seq and oxBS-seq as a routine assay for DNA 
hydro xymethylomes. So far, only a few cell types have deeply sequenced 
hydroxymethylomes at single-base resolution (18, 30, 39, 40, 42–46).

To overcome this potential cost-barrier problem, we have devel-
oped a deep learning–based algorithm, DeepH&M, which integrates 
enrichment and restriction enzyme sequencing methods to estimate 
the absolute levels of hydroxymethylation and methylation at single- 
CpG resolution. The cost of the three assays combined is <5% of 
WGBS and TAB-seq. About 50 to 100 million MeDIP reads, 30 mil-
lion MRE reads, and 50 million hmC-Seal-seq reads are sufficient 
for measuring a hydroxymethylome with DeepH&M, which trans-
lates to roughly 3× coverage of the human or mouse genome. In 
addition, TAB-seq requires ~3 g of genomic DNA, while MeDIP-
seq, MRE-seq, and hmC-Seal can be generated from 100 ng or less 
input, thus allowing DeepH&M to be more amenable to rare or dif-
ficult-to-procure cells or samples. Compared with 100× coverage for 
TAB-seq and 20× coverage for WGBS, our method can minimize 
the cost of generating a complete hydroxymethylome by 40-fold. Fur-
thermore, DeepH&M can estimate for all CpGs, while WGBS and 
TAB-seq miss a considerable fraction of the genome due to low cover-
age. As mentioned previously, previous TAB-seq study on H1 cells 
could only confidently call 20% or higher 5hmC at a coverage of 27 
and, thus, identified less than 1 million hydroxymethylated CpGs (18).

Fig. 5. DeepH&M can predict DHMRs and DMRs between 7- and 79-week-old 
mouse cerebella. (A) Distribution of mean 5hmC for gold standard data and pre-
dictions at hyperDHMRs and hypoDHMRs defined by hmC-Seal data between 
7- and 79-week-old cerebella. Gold is for gold standard data. Pred is for prediction. 
N is the number. 7w, 7 weeks; 79w, 79 weeks. (B) Distribution of mean 5hmC + 5mC 
for gold standard data and predictions at hyperDMRs and hypoDMRs defined by 
WGBS data between 7- and 79-week-old cerebella. (C) Distribution of mean 5hmC 
for gold standard data and predictions at hyperDMRs and hypoDMRs defined by 
TAB-seq data between 7- and 79-week-old cerebella.
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One caveat to DeepH&M is that TAB-seq and WGBS libraries 
must be sequenced initially to generate training data for the cell 
type of interest. Because creating comprehensive hydroxymethy-
lome and methylome can be cost prohibitive, we explored alterna-
tive methods of generating training data. Currently, Infinium 
MethylationEPIC BeadChip Kit (Illumina, WG-317-1001) can pro-
file the methylation levels from roughly 850,000 CpGs at single- 
nucleotide resolution for humans. To address whether methylation 
microarray results could be used as training set, we asked whether 
DeepH&M can be trained on 850,000 CpGs in our mouse data. 
Compared with 2 million CpG training data, which have 86% 5hmC 
and 90% 5mC concordance, DeepH&M can still predict with 83 and 
89% concordance for 5hmC and 5mC, respectively. Therefore, to 
reduce the cost of generating training data, we can replace WGBS 
and TAB-seq with methylation arrays coupled with bisulfite- and 
TAB-treated samples, respectively (30). It is also feasible to supply 
other enrichment and restriction enzyme sequencing methods as 
replacement of DeepH&M inputs, such as replacing hmC-Seal with 
hMeDIP-seq. However, users need to retrain the DeepH&M model 
when using new input methods.

Using 7-week-old mouse cerebellum data for training DeepH&M 
model, we demonstrated that the estimated 5hmC and 5mC levels 
were in high concordance with those estimated by combining TAB-
seq and WGBS data. DeepH&M estimated 5hmC levels at 85% con-
cordance with TAB-seq data within 0.1 difference, and DeepH&M 
estimated total methylation level at 91% concordance with WGBS 
data within 0.25 difference. Furthermore, DeepH&M can be gen-
eralizable to other tissues and biological time points. DeepH&M 

model trained on 7-week-old mouse cerebellum data was able to 
estimate 5hmC and 5mC levels with high performance for 79-week-
old mouse cerebellum (concordance for 5hmC and total methylation 
is 84 and 92%). DHMRs and DMRs between 7- and 79-week-old 
mouse cerebella can be recapitulated using the estimated 5hmC 
and 5mC values from DeepH&M for the two ages. However, we 
report relatively lower performance for 7-week-old mouse cortex 
(concordance for 5hmC and total methylation is 72 and 92%, re-
spectively). The relatively lower performance for cortex may be ex-
plained by the rather big global differences of 5hmC distribution in 
cerebellum and cortex, as the mean 5hmC level is 0.19 in cortex and 
0.11 in cerebellum. As one of the caveats of DeepH&M, these data 
suggest that the DeepH&M model cannot be generalized to differ-
ent tissues when 5hmC levels differ greatly between tissues. When 
we applied our DeepH&M model to mouse fetal cortex (mean 
5hmC level of 0.05), the concordance for 5hmC and total methyla-
tion is 61 and 94%, respectively. The extremely low concordance for 
5hmC indicates that the mean level of 5hmC should be taken into 
account when applying trained models to different biological sys-
tems. Because of the dynamic range of absolute 5hmC levels in 
different tissues, the relationships between MeDIP-seq, MRE-seq, 
and hmC-Seal data and 5hmC are different in different tissues, and 
thus, a single DeepH&M model cannot be generalized to all tis-
sues. One way to address this limitation is to categorize tissues into 
multiple classes based on their 5hmC levels and train a DeepH&M 
model for each group. The DeepH&M model trained for each 
group can then be generalized to tissues that have similar 5hmC 
levels.

Fig. 6. Performance of the DeepH&M model in 7-week-old mouse cortex. (A) Density plots of predictions and gold standard data for 5hmC, 5mC, and total methyla-
tion. (B) Global distribution comparison of predictions and gold standard data for 5hmC, 5mC, and total methylation. (C) Concordance between predictions and gold 
standard data for 5hmC, 5mC, and total methylation at CpGs with differing 5hmC/5mC/total methylation levels.
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MATERIALS AND METHODS
DeepH&M model
The DeepH&M model is derived from the DeepCpG model, which 
predicts single-cell DNA methylation states using deep learning 
(47). The DeepH&M model is composed of three modules: a reg-
ular neural network–based CpG module, a convolutional neural 
network–based DNA module, and a regular neural network–based 
joint module (Fig. 2). The CpG module extracts information from 
inputs of genomic features and methylation features of a CpG with 
regular neural network. The DNA module takes DNA sequence 
around a CpG as input and uses convolutional neural network 
to extract information from the DNA sequence. The joint module 
combines outputs from the CpG module and DNA module and 
predicts 5hmC and 5mC simultaneously with regular neural network.

Unlike the CpG module in DeepCpG, which is a recurrent 
neural network, the CpG module in DeepH&M is a regular neural 
network using two fully connected layers with 100 neurons and rec-
tified linear unit (ReLU) activation function. The inputs for the 
CpG module are genomic features and methylation features (table S1) 
for each CpG. Genomic features include GC percent, CpG den-
sity, and distance to the nearest CGI. Methylation features include 
MeDIP-seq, MRE-seq, and hmC-Seal signal. Because CpGs in prox-
imity tend to have similar 5hmC and 5mC levels, we also include 
average signal for the above features in neighboring windows (0 to 
50 bp, 50 to 250 bp, 250 to 500 bp, and 500 to 1000 bp) around the 
target CpG.

The structure of our DNA module is the same as that of the 
DNA module of the DeepCpG model, except that the activation func-
tion in our DNA module is tanh function instead of ReLU function 
(with two connected layers: layer 1 with 120 neurons and layer 2 
with 240 neurons).

Joint module uses two fully connected layers with 100 neurons 
and ReLU activation function to predict 5hmC and 5mC simultane-
ously, unlike the joint module in DeepCpG, which only predicts 
DNA methylation.

We used data that have at least 25× coverage from TAB-seq data 
and 20× coverage from WGBS data for training and validation. The 
feature data are normalized by Z score normalization. Because the 
number of high-5hmC-level CpGs was much smaller than that with 
low hmC levels, we balanced the training set through subsampling 
and oversampling. We divided CpGs into nine windows based on 
5hmC levels 0 to 0.05, 0.05 to 0.1, 0.1 to 0.15, 0.15 to 0.2, 0.2 to 0.25, 
0.25 to 0.3, 0.3 to 0.35, 0.35 to 0.4, and 0.4 to 1 and subsampled 
CpGs if the number of CpGs in the window was higher than a 
threshold and oversampled CpGs if the number of CpGs in the win-
dow was less than a threshold. The threshold was chosen as the me-
dian of the number of CpGs in nine windows. Data were randomly 
split into training set (2 million CpGs), validation set (0.5 million 
CpGs), and test set (the rest). Model parameters were learnt on 
the training set by minimizing the L2 loss function. We selected the 
model that had the smallest loss in the validation set and used the 
model to predict 5hmC and 5mC for all CpGs.

Tissue sample dissection and genomic DNA extraction
All procedures were approved by the Washington University Insti-
tutional Animal Care and Use Committee. Two male 6-week-old 
C57BL/6J mice and two male 78-week-old C57BL/6J mice were 
purchased (the Jackson laboratory, 000664) and allowed to accli-
mate in the mouse facility for a week. Cerebella were dissected fol-

lowing protocol described previously (48) from mice in both age 
groups, while the frontal cortex (from bregma +1.0 mm to the base of 
the olfactory bulb) was dissected as described previously (39) from 
7-week-old mice. All tissues were snap frozen in liquid nitrogen im-
mediately after dissection.

Each tissue was cut into two pieces with a sterile razor blade 
for subsequent DNA and RNA extraction immediately after. For 
genomic DNA extraction, we followed previously established pro-
tocol (49). In brief, each tissue piece was incubated in 600 l of lysis 
buffer [50 mM tris-HCl (pH 8), 1 mM EDTA (pH 8), 0.5% SDS, 
proteinase K (1 mg/ml)] at 55°C for 4 hours. DNA was purified by 
phenol/chloroform/isoamyl alcohol extraction followed by ethanol 
extraction. DNA used for MeDIP-seq was sheared into 100- to 500-bp 
fragment size with the Bioruptor Pico Sonication System, while 
DNA for WGBS and TAB-seq was sheared into 200- to 600-bp frag-
ment size with a Covaris E220 ultrasonicator.

MeDIP-seq, MRE-seq, and hmC-Seal library construction 
and data processing
MeDIP-seq libraries were generated as previously described (49) with 
few modifications. One hundred nanograms of sheared DNA was 
ligated with Illumina adapters, and methylation-enriched adapter- 
ligated DNA fragments were immunoprecipitated with 0.1 g of anti- 
methylcytidine antibody (Eurogentec, BI-MECY-0100). MeDIP 
DNA fragments were amplified with Illumina barcodes with NEBNext 
High-Fidelity 2× PCR Master Mix (polymerase chain reaction) master 
mix (NEB, M0541). MeDIP-seq libraries were sequenced on Illumina 
NovaSeq 6000 platform.

MRE-seq libraries were generated as previously described (49) 
with few modifications. In brief, 50 ng of genomic DNA was digested 
by four restriction enzymes (HpaII, HinP1I, AciI, and HpyCH4IV) 
that generate a CG overhang. Adapter ligation was performed with 
custom Illumina adapters (5′-ACACTCTTTCCCTACACGAC-
GCT CTTCCGATC*T-3′ and 5’-P-CGAGATCGGAAGAGCAC-
ACGTC TGAACTCCAGTCAC-3′). Adapter-ligated DNA fragments 
were amplified with Illumina barcodes with NEBNext High-Fidelity 
2× PCR Master Mix master mix (NEB, M0541) and sequenced 
on Illumina NovaSeq 6000 platform.

To identify 5hmC-enriched regions, we performed Nano-hmC-
Seal (19) on tissue samples. In brief, 50 ng of genomic DNA was 
used in the tagmentation reaction. The tagmented DNA was gluco-
sylated by incubating in a 50-l solution containing 1× glucosyla-
tion buffer, 200 M UDP-azide-glucose (Active Motif, 55020), and 
5 U of T4 -glucosyltransferase (Thermo Fisher Scientific, EO0831) 
at 37°C for 1 hour. After glucosylation, the DBCO-PEG4-biotin 
reaction and streptavidin C1 bead pull-down were same as the 
Nano-hmC-Seal (19). The beads were washed 10 times with 1× 
binding-washing buffer and twice with double-distilled water (ddH2O) 
and were resuspended in 15 l of ddH2O. The captured DNA frag-
ments were amplified and barcoded by PCR using the NEBNext 
High-Fidelity 2× PCR Master Mix (NEB, M0541). hmC-Seal libraries 
were sequenced on Illumina NovaSeq 6000 platform.

The reads for MeDIP-seq, MRE-seq, and hmC-Seal were aligned 
to the mm9 reference genome with BWA (50) and then processed 
by methylQA (49). The signal for MeDIP-seq, MRE-seq, and hmC-
Seal at each CpG was the number of reads aligned to that location 
divided by total reads (million). The average signal for MeDIP-seq, 
MRE-seq, and hmC-Seal in each window was the mean of signal at 
all bases in that window.
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WGBS and TAB-seq library construction and data processing
WGBS and TAB-seq libraries were constructed using the 5hmC 
TAB-Seq Kit (Wisegene, K001) following the manufacturer’s pro-
tocol with few modifications detailed below. Five micrograms 
of sheared gDNA was treated with -glucosyltransferase–based reac-
tion to glucosylate 5hmCs. Four hundred nanograms of gluco-
sylated DNA was incubated in TET-based oxidation reaction at 
37°C for 1.5 hours. Five hundred nanograms of glucosylated DNA 
and 250 ng of TET-oxidized DNA were bisulfite converted using 
EZ DNA Methylation-Gold Kit (Zymo, D5005) for subsequent 
WGBS and TAB-seq library construction, respectively, with 
Accel-NGS Methyl- Seq DNA Library Kit (Swift Biosciences, 30024). 
WGBS and TAB- seq libraries were sequenced on Illumina NovaSeq 
6000 platform.

The reads for TAB-seq and WGBS data were aligned to mm9 
reference genome and processed using Bismark (51). A statistical 
method, MLML, was used to integrate TAB-seq and WGBS data to 
get consistent 5hmC and 5mC and total methylation (28).

DHMRs and DMRs identification
DHMRs between hmC-Seal datasets were defined by DiffBind (36) 
with a q value of 0.01.

DHMRs between TAB-seq datasets and DMRs between WGBS 
datasets were defined by DSS (37). Two replicates and smoothing 
options were used for DSS. The called DHMRs and DMRs were then 
filtered by requiring a minimal coverage of 10 by TAB-seq and WGBS 
data and the absolute difference of gold standard 5hmC (for DHMRs) 
and total methylation (for DMRs) in two datasets over 0.15.

Coverage required to call 5% 5hmC
On the basis of the binomial test with a probability of 2.22% for 
5mC nonconversion rate, the P value for using a coverage of 120 to 
call 5% 5hmC was calculated in R by binom.test(round(120*0.05), 
120, P = 0.0222, alternative = “greater”). The resulted P value for the 
test was 0.05184. Therefore, a coverage of 120 was required to called 
5% 5hmC at 95% confidence level.

Enrichment of 5hmC in genomic features
Enrichment fold = (#CpG for class A CpGs overlapping genomic 
feature B/#CpG in class A CpGs)/(#CpG for all classes of CpGs over-
lapping genomic feature B/#CpG in all classes of CpGs).

mRNA-seq library construction and data processing
Total RNA from tissue samples was extracted using TRIzol reagent as 
previously detailed (52). Five hundred nanograms of total RNA was pro-
cessed with Universal Plus mRNA-seq (messenger RNA sequencing) 
kit (Nugen, 0508-08) to generate mRNA-seq libraries, which were 
sequenced on Illumina NovaSeq 6000 platform. mRNA reads were 
aligned to mm9 reference genome using STAR (spliced transcripts 
alignment to a reference) (53). Read counts for each gene were ob-
tained using HTSeq (high-throughput sequencing) (54).

Software availability
DeepH&M tool is available in https://epigenome.wustl.edu/DeepHM/.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/27/eaba0521/DC1

View/request a protocol for this paper from Bio-protocol.
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