12 research outputs found
Human oncoprotein Musashi-2 N-terminal RNA recognition motif backbone assignment and identification of RNA-binding pocket
RNA-binding protein Musashi-2 (MSI2) is a key regulator in stem cells, it is over-expressed in a variety of cancers and its higher expression is associated with poor prognosis. Like Musashi-1, it contains two N-terminal RRMs (RNA-recognition Motifs, also called RBDs (RNA-binding Domains)), RRM1 and RRM2, which mediate the binding to their target mRNAs. Previous studies have obtained the three-dimensional structures of the RBDs of Musashi-1 and the RBD1:RNA complex. Here we show the binding of MSI2-RRM1 to a 15nt Numb RNA in Fluorescence Polarization assay and time resolved Fluorescence Resonance Energy Transfer assay. Using nuclear magnetic resonance (NMR) spectroscopy we assigned the backbone resonances of MSI2-RRM1, and characterized the direct interaction of RRM1 to Numb RNA r(GUAGU). Our NMR titration and structure modeling studies showed that MSI2-RRM1 and MSI1-RBD1 have similar RNA binding events and binding pockets. This work adds significant information to MSI2-RRM1 structure and RNA binding pocket, and contributes to the development of MSI2 specific and MSI1/MSI2 dual inhibitors
Design of Substrate Transmembrane Mimetics as Structural Probes for γ-Secretase
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of the American Chemical Society (JACS), copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jacs.9b13405.γ-Secretase is a membrane-embedded aspartyl protease complex central in biology and medicine. How this enzyme recognizes transmembrane substrates and catalyzes hydrolysis in the lipid bilayer is unclear. Inhibitors that mimic the entire substrate transmembrane domain and engage the active site should provide important tools for structural biology, yielding insight into substrate gating and trapping the protease in the active state. Here we report transmembrane peptidomimetic inhibitors of the γ-secretase complex that contain an N-terminal helical peptide region that engages a substrate docking exosite and a C-terminal transition-state analog moiety targeted to the active site. Both regions are required for stoichiometric inhibition of γ-secretase. Moreover, enzyme inhibition kinetics and photoaffinity probe displacement experiments demonstrate that both the docking exosite and the active site are engaged by the bipartite inhibitors. The solution conformations of these potent transmembranemimetic inhibitors are similar to those of bound natural substrates, suggesting these probes are preorganized for high-affinity binding and should allow visualization of the active γ-secretase complex, poised for intramembrane proteolysis, by cryo-electron microscopy.NIH R01 grant GM 122894NIH grant P30GM110761NIH grant P41GM11113
The 15-aa repeat region of Adenomatous polyposis coli is intrinsically disordered and retains conformational flexibility upon binding β-catenin
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biochemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.biochem.0c00479.The tumor suppressor Adenomatous polyposis coli (APC) is a large, multidomain protein with many identified cellular functions. The best characterized role of APC is to scaffold a protein complex that negatively regulates Wnt signaling via β-catenin destruction. This destruction is mediated by β-catenin binding to centrally located 15- and 20-amino acid repeat regions of APC. More than 80% of cancers of the colon and rectum present with an APC mutation. Most carcinomas with mutant APC express a truncated APC protein that retains the ∼200-amino acid long′ 15-amino acid repeat region′. This study demonstrates that the 15-amino acid repeat region of APC is intrinsically disordered. We investigated the backbone dynamics in the presence of β-catenin and predicted residues that may contribute to transient secondary features. This study reveals that the 15-amino acid region of APC retains flexibility upon binding β-catenin and that APC does not have a single, observable “highest-affinity” binding site for β-catenin. This flexibility potentially allows β-catenin to be more readily captured by APC and then remain accessible to other elements of the destruction complex for subsequent processing
Crystal and solution structures of human oncoprotein Musashi‐2 N‐terminal RNA recognition motif 1
This work is licensed under a Creative Commons Attribution 4.0 International License.Musashi‐2 (MSI2) belongs to Musashi family of RNA binding proteins (RBP). Like Musashi‐1 (MSI1), it is overexpressed in a variety of cancers and is a promising therapeutic target. Both MSI proteins contain two N‐terminal RNA recognition motifs and play roles in posttranscriptional regulation of target mRNAs. Previously, we have identified several inhibitors of MSI1, all of which bind to MSI2 as well. In order to design MSI2‐specific inhibitors and compare the differences of binding mode of the inhibitors, we set out to solve the structure of MSI2‐RRM1, the key motif that is responsible for the binding. Here, we report the crystal structure and the first NMR solution structure of MSI2‐RRM1, and compare these to the structures of MSI1‐RBD1 and other RBPs. A high degree of structural similarity was observed between the crystal and solution NMR structures. MSI2‐RRM1 shows a highly similar overall folding topology to MSI1‐RBD1 and other RBPs. The structural information of MSI2‐RRM1 will be helpful for understanding MSI2‐RNA interaction and for guiding rational drug design of MSI2‐specific inhibitors
Hippo signaling activates hedgehog signaling by Taz-driven Gli3 processing
Abstract The overlapping roles of Hippo and Hedgehog signaling in biological functions and diseases prompt us to investigate their potential interactions. Activation of Hippo signaling enhances the transcriptional output of Hedgehog signaling, and the role of Hippo signaling in regulating Hedgehog signaling relies on the Hippo pathway key effector, Taz. Interestingly, Taz exhibits a gradient expression across the posterior-to-anterior of limb bud mesoderms, similar to Sonic hedgehog (Shh). Importantly, Taz drives PKA to phosphorylate Gli3, resulting in the Gli3 processing into its repressor and attenuation of Hedgehog signaling in the Shh-independent manner. Specifically, Taz deletion in mouse embryonic limb bud mesenchyme not only enhances the Hedgehog signaling but partially restores the phenotypes from Shh deletion in causing severe defects of anteroposterior patterning and digit number and identity. Together, these results uncover Taz-dependent Gli3 processing as a hitherto uncharacterized mechanism controlling Hedgehog signaling, highlighting its cross-regulation by Hippo signaling
Solution structure determination for the CYS74 to ALA74 mutant of the catalytic domain of Zoocin A
Zoocin A is a Zn-metallopeptidase secreted by Streptococcus zooepidemicus strain 4881. It has strong inhibitory activity against Streptococcus mutans and thus can serve as a potential treatment for dental caries. The solution NMR structure of the Cys74 to Ala74 mutant of the recombinant catalytic domain (rCAT C74A) of zoocin A has been determined. The structure of rCAT C74A, together with the structure of recombinant target recognition domain (rTRD) of zoocin A, completes a three dimensional view of zoocin A. While the structure of rCAT C74A resembles those of lysostaphin and lytM, the substrate binding groove is wider and no tyrosine residue was observed in the active site. The wider binding groove of rCAT C74A may account for its substrate specificity for D-alanyl-L-alanine peptides, and the absence of a tyrosyl residue or spatially and structurally equivalent hydrogen bond donor in the active site indicates that rCAT C74A may adopt a catalytic mechanism different in some details from that of lytM, and the catalytic mechanism of M23 endopeptidases may have divergent aspects. (Published By University of Alabama Libraries
Phosphorylation of human glioma-associated oncogene 1 on Ser937 regulates Sonic Hedgehog signaling in medulloblastoma
Abstract Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1’s proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1 S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1 S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC
Identification and Validation of an Aspergillus nidulans Secondary Metabolite Derivative as an Inhibitor of the Musashi-RNA Interaction
This work is licensed under a Creative Commons Attribution 4.0 International License.RNA-binding protein Musashi-1 (MSI1) is a key regulator of several stem cell populations. MSI1 is involved in tumor proliferation and maintenance, and it regulates target mRNAs at the translational level. The known mRNA targets of MSI1 include Numb, APC, and P21WAF-1, key regulators of Notch/Wnt signaling and cell cycle progression, respectively. In this study, we aim to identify small molecule inhibitors of MSI1–mRNA interactions, which could block the growth of cancer cells with high levels of MSI1. Using a fluorescence polarization (FP) assay, we screened small molecules from several chemical libraries for those that disrupt the binding of MSI1 to its consensus RNA. One cluster of hit compounds is the derivatives of secondary metabolites from Aspergillus nidulans. One of the top hits, Aza-9, from this cluster was further validated by surface plasmon resonance and nuclear magnetic resonance spectroscopy, which demonstrated that Aza-9 binds directly to MSI1, and the binding is at the RNA binding pocket. We also show that Aza-9 binds to Musashi-2 (MSI2) as well. To test whether Aza-9 has anti-cancer potential, we used liposomes to facilitate Aza-9 cellular uptake. Aza-9-liposome inhibits proliferation, induces apoptosis and autophagy, and down-regulates Notch and Wnt signaling in colon cancer cell lines. In conclusion, we identified a series of potential lead compounds for inhibiting MSI1/2 function, while establishing a framework for identifying small molecule inhibitors of RNA binding proteins using FP-based screening methodology.NIH R01 CA178831NIH CA191785National Institute of General Medical Science (P01GM084077)University of Kansas Bold Aspiration Strategic Initiative AwardNational Cancer Institute Cancer Center Support Grant P30 CA168524Kansas Bioscience Authority Rising Star AwardNIH AI074856NIH COBREIrving S. Johnson Fund of the University of Kansas Endowmen