4 research outputs found

    Assessing Heavy Metal Pollution of the Largest Nature Reserve in Tianjin City, China

    Get PDF
    Embargo until June 10, 2023Beidagang Wetland (BW) Nature Reserve is centrally situated in Tianjin City, experiencing an extreme industrial development. This study uses index characteristic analysis systems for assessing the individual and combined heavy metal pollution loading in the water during the spring and autumn seasons. By combining the pollution level of single pollutant, a more comprehensive evaluation of water quality in BW was achieved. Water quality was worst during autumn due to high level of Cd and Pb, which indicate the type of anthropogenic activities have a serious effect on heavy metal pollution in BW. In addition, high exchangeable amounts of Cd (> 40%) were found in the sediments of BW, indicating Cd pollution has emerged. There is a need for appropriate abatement actions curbing heavy metal loading and improving water quality of the BW Nature Reserve, thereby ensuring a sustainable management of its ecosystem services.acceptedVersio

    Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors

    No full text
    Enabling fast ion diffusion in thick electrodes (100–200 μm, ~10 mg cm−2) is critical for their practical application in state-of-the-art supercapacitors (SCs). We developed a three-dimensional (3D) boron, nitrogen, and phosphorus ternary-doped holey graphene hydrogel (BNP-HGH) film to achieve an optimized porous structure with a high electrical conductivity, large ion accessible surface area, efficient electron and ion transport pathways, as well as high ion adsorption capacity. The binder-free BNP-HGH electrode can deliver a specific capacitance of 350 F g−1 and a volumetric capacity of 234 F cm−3, which are the best performance reported so far for graphene-based SCs using an organic electrolyte. Fully packaged SCs using the BNP-HGH electrodes with a commercial level graphene mass loading (150 μm, ~10 mg cm−2) can deliver ultrahigh stack gravimetric and volumetric energy densities of 38.5 Wh kg−1 and 57.4 Wh L−1, respectively, which are comparable to those of lead-acid batteries (35–40 Wh kg−1 and 50–90 Wh L−1) while maintaining an ultrahigh power density of 83 kW kg−1 (~55 kW L−1) as well as a long cycle life (81.3% capacitance retention over 50,000 cycles). The high energy and power densities bridge the gap between traditional SCs and batteries, and should be very useful in practical applications
    corecore