306 research outputs found
Recommended from our members
Capability of phytoremediation of glyphosate in environment by Vulpia myuros
Glyphosate is an herbicide extensively used worldwide that can remain in the soil. Phytoremediation to decontaminate polluted water or soil requires a plant that can accumulate the target compound. Vulpia myuros is an annual fescue that can be used as a heavy mental phytoremediation strategy. Recently, it has been used to intercrop with tea plant to prohibit the germination and growth of other weeds in tea garden. In order to know whether it can be used an decontaminating glyphosate’ plant in water or soil, in this study, glyphosate degradation behavior was investigated in Vulpia myuros cultivated in a hydroponic system. The results showed that the concentration of glyphosate in the nutrient solution decreased from 43.09 μg mL−1 to 0.45 μg mL−1 in 30 days and that 99% of the glyphosate molecules were absorbed by V. myuros. The contents of glyphosate in the roots reached the maximum (224.33 mg kg−1) on day 1 and then decreased. After 3 days, the content of glyphosate in the leaves reached the highest value (215.64 mg kg−1), while it decreased to 156.26 mg kg−1 in the roots. The dissipation dynamics of glyphosate in the whole hydroponic system fits the first-order kinetic model C = 455.76e−0.21 t, with a half-life of 5.08 days. Over 30 days, 80% of the glyphosate was degraded. The contents of the glyphosate metabolite amino methyl phosphoric acid (AMPA), ranged from 0.103 mg kg−1 on day 1–0.098 mg kg−1 on day 30, not changing significantly over time. The Croot/solution, Cleaf/solution and Cleaf/root were used to express the absorption, transfer, and distribution of glyphosate in V. myuros. These results indicated that glyphosate entered into the root system through free diffusion, which was influenced by both the log Kow and the concentration of glyphosate in the nutrient solution, and that glyphosate was either easily transferred to the leaves through the transpiration stream, accumulated, or degraded. The degradation of glyphosate in V. myuros indicated that it has potential as a remediating plant for environmental restoration
Recommended from our members
A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar
The presence of polycyclic aromatic hydrocarbons (PAHs) in soil negatively affects the environment and the degradation of these contaminants is influenced by nitrogen metabolism. However, the mechanisms underlying the interrelationships between the functional genes involved in nitrogen metabolism and phenanthrene (PHE) biodegradation, as well as the effects of biochar on these mechanisms, require further study. Therefore, this study utilised metabolomic and metagenomic analysis to investigate primary nitrogen processes, associated functional soil enzymes and functional genes, and differential soil metabolites in PHE-contaminated soil with and without biochar amendment over a 45-day incubation period. Results showed that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were the dominant nitrogen metabolism processes in PHE-contaminated soil. The addition of biochar enhanced nitrogen modules, exhibiting discernible temporal fluctuations in denitrification and DNRA proportions. Co-occurrence networks and correlation heatmap analysis revealed potential interactions among functional genes and enzymes responsible for PHE biodegradation and nitrogen metabolism. Notably, enzymes associated with denitrification and DNRA displayed significant positive correlation with enzymes involved in downstream phenanthrene degradation. Of particular interest was stronger correlation observed with the addition of biochar. However, biochar amendment inhibited the 9-phenanthrol degradation pathway, resulting in elevated levels of glutathione (GSH) in response to environmental stress. These findings provide new insights into the interactions between nitrogen metabolism and PHE biodegradation in soil and highlight the dual effects of biochar on these processes
Sorption of Hydrophobic Organic Contaminants by Natural Organic Matter and its Clay Complex
University of MassachusettsScedule:17-18 March 2003, Vemue: Kanazawa, Japan, Kanazawa Citymonde Hotel, Project Leader : Hayakawa, Kazuichi, Symposium Secretariat: XO kamata, Naoto, Edited by:Kamata, Naoto
Investigation of the Adsorption Characteristics of Antimony, Cadmium, and Lead by Nano- and Microparticle Titania
The utilization of nanotechnology is expected to rise greatly within the next decade. The increasing ubiquity of nanotechnology, coupled with the fact that the toxicity of a nanomaterial is partially dependent on its adsorbed components, emphasizes the general importance, and environmental significance, of nanomaterial adsorption studies. Using nanoparticle titania (and microparticle titania for comparison), a series of adsorption experiments were performed. The antimony, lead, and cadmium adsorption capacity of nanoparticle titania was compared to that of microparticle titania. During a typical adsorption experiment, a known amount of nanomaterial was shaken with a solution containing a known concentration of antimony, lead, and cadmium. Following an equilibration period, the solutions were filtered, centrifuged, and analyzed using either inductively coupled plasma - mass spectrometry (ICP-MS), or inductively coupled plasma - atomic emission spectroscopy (ICP-AES). The effect of light and adsorption on antimony speciation was also investigated by using high performance liquid chromatography (HPLC) in conjunction with ICP-MS. Adsorption experiments indicate that nanoparticle titania has a higher adsorption affinity for antimony, cadmium, and lead species when compared to microparticle titania. Langmuir and Freundlich isotherm plots were created, and it was determined that both isotherms provided a good fit for the data. Results of the antimony speciation studies indicate that Sb(III) was oxidized to Sb(V) and adsorbed by microparticle titania; Sb(III) oxidation cannot be confirmed when nanoparticle titania is used as the adsorbent, as complete antimony adsorption always occurred at the concentrations studied. The presence of ambient light had only a small effect on adsorption and oxidation; antimony adsorption by microparticle titania was more complete in the absence of light
Recommended from our members
Nano-black carbon (biochar) released from pyrogenic carbonaceous matter as a super suspending agent in water/soil environments
Nano-black carbon (BC) is one of the most active fractions in the pyrogenic carbonaceous matter continuum. The majority of recent studies mainly focus on the role of nano-BC in the global carbon cycle. However, based on literature and our recent studies, we suggest that nano-BC may also serve as a super suspending agent, carrier, and redox mediator for sorbates during its migration from terrestrial to water bodies due to its unique properties such as high colloidal stability, strong sorption capacity, and high surface reactivity. The full implications of nano-BC in water/soil environments are far more than we expected. Thus, we call for more detailed investigations on the activity and reactivity of nano-BC in water/soil environments
Fitoextração: uma revisão sobre disponibilidade induzida e acumulação de metais em plantas
Phytoextraction has emerged as a novel approach to clean up metal-polluted soils in which plants are used to transfer toxic metals from soils to shoots. This review provides a synthesis of current knowledge on phytoextraction of metals from soils and their accumulation in plants. The objective is to integrate soil-related (root exudates and chemical amendments) and biological advances to suggest research needs and future directions. As far as can be deduced from the literature, it will be some time before phytoextraction may be established as a commercial technology. For chemically-assisted phytoextraction, research has not shown easily biodegradable compounds to overcome the risks associated with the use of EDTA for poorly available metals in soils. On the other hand, significant progress has been made on the physiological and molecular aspects regarding tolerance and phytoaccumulation of metals in plants. A multidisciplinary approach is warranted to make phytoextraction a feasible commercial technology to remediate metal-polluted soils.A fitoextração é uma tecnologia emergente para despoluição de solos contaminados por metais pesados que usa plantas para transferir metais do solo para a parte aérea, a qual pode ser removida da área poluída. Esta revisão apresenta uma síntese do atual conhecimento sobre fitoextração de metais pesados do solo e sua acumulação em plantas. O objetivo é integrar em uma mesma discussão os avanços relacionados à química do solo (exsudação radicular e adição de agentes quelantes para aumentar a absorção) e à biologia (tolerância a metais e melhoramento genético) visando sugerir futuras pesquisas na área. Embora promissor, o atual estado de desenvolvimento da fitoextração ainda não permite estabelecê-la como uma tecnologia comercial. A pesquisa ainda não encontrou agentes quelantes facilmente biodegradáveis que possam substituir o EDTA na solubilização de metais pouco disponíveis em solos. Entretanto, significativos progressos têm sido feitos no entendimento dos mecanismos fisiológicos e moleculares de tolerância e acumulação de metais em plantas. Uma abordagem multidisciplinar dos vários aspectos que envolvem a fitoextração poderá tornar essa tecnologia econômica e ambientalmente viável a médio prazo
Recommended from our members
Effects of Phosphorus Ensembled Nanomaterials on Nutrient Uptake and Distribution in Glycine max L. under Simulated Precipitation
Nanoscale hydroxyapatite (nHA) was synthesized to investigate its potential as a phosphorus (P) ensembled nanofertilizer, using soybean (Glycine max L.) as a model plant. The conventional analogue phosphate (pi) was used for comparison with the synthesized nHA. Varied precipitation intensities (0%, 30%, 60%, and 100%) were simulated by adding selected volumes of the P fertilizers (nHA or pi) via foliar spray and soil amendment. The total amounts of added P were the same across all the treatments. The importance of a wash-off effect was investigated on foliar-treated seedlings by evaluating different watering heights (20, 120, and 240 cm above the seedlings). Fresh weight, pigment content, macro-, and micronutrient contents were measured in soybean tissues across all the treatments after 4 weeks of greenhouse cultivation. The synthesized nHA showed superior effects on plant nutrient content upon high precipitation intensities. For example, at 100% precipitation intensity, there was 32.6% more P and 33.2% more Ca in shoots, 40.6% more P and 45.4% more Ca in roots, and 37.9% more P and 82.3% more Ca in pods, as compared to those with pi treatment, respectively. No impact on soybean biomass was evident upon the application of nHA or pi. Further investigation into customizing nHA to enhance its affinity with crop leaves and to extend retention time on the leaf surface is warranted given that the present study did not show significant positive impacts of nHA on soybean growth under the effects of precipitation. Taken together, our findings increase understanding of the potential application of nHA as a nano-enabled fertilizer in sustainable agriculture
Interaction Mechanism of Benzene and Phenanthrene in Condensed Organic Matter: Importance of Adsorption (Nanopore-Filling)
Although microporosity and surface area of natural organic matter (NOM) are crucial to mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have wrongly been estimated by the N2 adsorption technique. Nuclear magnetic resonance spectroscopy (13C NMR), and benzene, carbon dioxide, and nitrogen adsorption techniques were used to characterize structural and surface properties for different condensed NOM samples, which were related to the sorption behavior of phenanthrene (Phen). It was found that the revised Freundlich model by taking the chemical activity into account can well describe the isotherms for benzene and Phen. The benzene and Phen adsorption volumes for the coal samples are similar to or lower than the CO2-nanopore volumes. Adsorption volumes of both benzene and Phen are significantly related to the aliphatic carbon structure, and their correlation lines are nearly overlapped, suggesting that the nanopore filling for Phen and benzene on the investigated samples is the dominating mechanism, and also is not affected by water molecules. The entrapment of benzene and/or the pore deformation in the NOM nanopore are likely responsible for the observed hysteresis of benzene. The above results demonstrate that Phen and benzene adsorption on the condensed NOM is closely associated with the aliphatic carbon structure of the investigated samples
Interaction Mechanism of Benzene and Phenanthrene in Condensed Organic Matter: Importance of Adsorption (Nanopore-Filling)
Although microporosity and surface area of natural organic matter (NOM) are crucial to mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have wrongly been estimated by the N2 adsorption technique. Nuclear magnetic resonance spectroscopy (13C NMR), and benzene, carbon dioxide, and nitrogen adsorption techniques were used to characterize structural and surface properties for different condensed NOM samples, which were related to the sorption behavior of phenanthrene (Phen). It was found that the revised Freundlich model by taking the chemical activity into account can well describe the isotherms for benzene and Phen. The benzene and Phen adsorption volumes for the coal samples are similar to or lower than the CO2-nanopore volumes. Adsorption volumes of both benzene and Phen are significantly related to the aliphatic carbon structure, and their correlation lines are nearly overlapped, suggesting that the nanopore filling for Phen and benzene on the investigated samples is the dominating mechanism, and also is not affected by water molecules. The entrapment of benzene and/or the pore deformation in the NOM nanopore are likely responsible for the observed hysteresis of benzene. The above results demonstrate that Phen and benzene adsorption on the condensed NOM is closely associated with the aliphatic carbon structure of the investigated samples
Recommended from our members
Polyethylene microplastics impede the innate immune response by disrupting the extracellular matrix and signaling transduction
- …