25 research outputs found

    Virtual Inertia Adaptive Control of a Doubly Fed Induction Generator (DFIG) Wind Power System with Hydrogen Energy Storage

    Get PDF
    This paper presents a doubly fed induction generator (DFIG) wind power system with hydrogen energy storage, with a focus on its virtual inertia adaptive control. Conventionally, a synchronous generator has a large inertia from its rotating rotor, and thus its kinetic energy can be used to damp out fluctuations from the grid. However, DFIGs do not provide such a mechanism as their rotor is disconnected with the power grid, owing to the use of back-to-back power converters between the two. In this paper, a hydrogen energy storage system is utilized to provide a virtual inertia so as to dampen the disturbances and support the grid’s stability. An analytical model is developed based on experimental data and test results show that: (1) the proposed method is effective in supporting the grid frequency; (2) the maximum power point tracking is achieved by implementing this proposed system; and, (3) the DFIG efficiency is improved. The developed system is technically viable and can be applied to medium and large wind power systems. The hydrogen energy storage is a clean and environmental-friendly technology, and can increase the renewable energy penetration in the power network

    GLP-2 potentiates L-type Ca 2+

    No full text

    Mineralized Granitic Porphyry of the Yangla Copper Deposit, Western Yunnan, China: Geochemistry of Fluid Inclusions and H-O, S, and Pb Isotopes

    No full text
    The Yangla copper deposit (YCD) is located in the central part of the Jinshajiang tectonic belt (Jinshajiang metallogenic belt) and is one of the most important copper deposits which has the large-scale copper reserves of the northwestern Yunnan, China. The ore bodies are strictly controlled by the stratum, pluton, and structure, which are layered, lens, and vein-like within the contact or fracture zone of the pluton and surrounding rock. At Yangla, two styles of mineralization occur at the brecciated contact zone between the pluton (granodiorite and granitic porphyry) and carbonaceous wall rock and include strata bound/lens-shaped replacement of carbonate rocks (skarn style) and porphyry-style sulfide-quart-calcite veins. But, the granitic porphyry mineralization have received less attention; the isotope and fluid inclusion studies are relatively scarce for limited porphyry ore bodies that have been discovered at the YCD. Quartz-hosted fluid inclusions from the recently discovered granitic porphyry have homogenization temperature averaging around 180±20°C and 300±20°C with salinities ranging from 4 to 22 wt.% NaCleq, pointing toward the contribution of medium temperature-medium salinity and low temperature-low salinity fluids during the metallogenesis. These fluid inclusions have δ18OH2O values ranging between -1.91‰ and -1.02‰ and δD values ranging between -143.10‰ and -110‰, suggesting that the ore-forming fluid was a mix of magmatic and meteoric water. Ore-related pyrite/chalcopyrite have δ34SV-CDT values ranging from -1.0‰ to 1.0‰ and whole rocks have δ34SΣS = 0.34, suggesting that sulfur mainly derived from magmatic rocks of the Yangla mining area. The sulfides 208Pb/204Pb ranged from 38.8208-38.9969, 207Pb/204Pb from 15.7079-15.7357, and 206Pb/204Pb from 18.5363-18.7045, indicating that the lead mainly originated from the upper crust. It is demonstrated that the evolution of ore-forming fluid is continuous from the skarn ore body (SOB) stage to the porphyritic ore body stage and belong to the products of the same ore-forming fluid system, and the unisothermal mixing and cooling actions were maybe the main mechanism at the metallic minerals precipitation in mineralized granitic porphyry (MGP). A model is proposed according to the early stage, a magmatic fluid reacted and replaced with the surrounding carbonate rocks and then formed skarn-type ore bodies. The magmatic-hydrothermal fluid subsequently deposited porphyry-type quartz-calcite veins, veinlets, and stockwork mineralization

    Air breakdown during fires

    No full text
    This paper analyzes the different discharge processes occurring at normal temperatures and high temperatures. The theoretical results show that the net charges in the streamer channel at normal temperatures are zero, but they are positive at high temperatures so that the advancing field is reinforced more than that at normal temperatures. Therefore, the field required for streamer propagation is reduced at high temperatures. The sparkover voltage is largely reduced with increased temperature, which is influenced by the solid materials in the flame

    Air breakdown behavior of two series gaps for composite switching impulse/alternating voltage

    No full text
    More and more high voltage transmission lines make use of rubber housed ZnO arresters in series with another air gap (for example, the insulator gap) as lighting protection elements. Many test results of ZnO arresters protection performance show that this insulation arrangement is suitable for practical lines according to results based on only simple impulse voltage. This paper uses a composite voltage (switching impulse voltage/alternating voltage) to determine the air breakdown behavior of the conductor-rod gap in series with the sphere gap. In the test, the switching impulse voltage is applied to the conductor while the alternating voltage is applied to the rod and one sphere and the other sphere is grounded. The results show that in some cases, the value of the U50% sparkover voltage for the conductor-rod gap with the composite voltage is nearly only half of that for just the simple impulse voltage

    Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    No full text
    Objective: Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. Methods: We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. Results: We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neuronsNTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. Conclusions: We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity
    corecore