404 research outputs found

    イオン化蒸着法により作製した水素化アモルファス炭素膜の超潤滑特性とその構造および環境依存性

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 加藤 孝久, 東京大学准教授 ドロネージャン ジャック, 東京大学准教授 崔 埈豪, 東京大学講師 千足 昇平, 東京都立産業技術研究センター研究員 川口 雅弘University of Tokyo(東京大学

    xCT increases tuberculosis susceptibility by regulating antimicrobial function and inflammation

    Get PDF
    The physiological functions of macrophage, which plays a central role in the pathogenesis of tuberculosis, depend on its redox state. System xc-, a cystine-glutamate transporter, which consists of xCT and CD98, influences many ROS-dependent pathways by regulating the production of the antioxidant glutathione. xCT\u27s ability to alter this critical host redox balance by increasing the glutathione synthesis aspect of phagocyte physiology suggested that it might influence tuberculosis pathogenesis. In this study, we found that the xCT expression was increased in peripheral blood monocyte of active tuberculosis. xCT expression in macrophage was induced by Mycobacterium tuberculosis (Mtb) through TLR2/Akt- and p38-dependent signaling pathway. Importantly, xCT deficiency conferred protection against tuberculosis, as xCT knock out mice displayed increased Mtb load and reduced pulmonary pathology in lung compared to wild type mice. xCT disruption enhanced the mycobateriacidal activity of macrophage through increasing the mycothiol oxidation. Importantly, chemical inhibition of xCT with sulfasalazine, a specific xCT inhibitor that is already approved by the FDA for treatment of inflammatory bowel disease, produces similar protective effects in vivo and in vitro, indicating xCT might be a novel and useful target for host-directed TB treatment strategy

    Roles of circulating soluble interleukin (IL)-6 receptor and IL-6 receptor expression on CD4+ T cells in patients with chronic hepatitis B

    Get PDF
    SummaryObjectivesThe objective of this study was to investigate the potential clinical roles of circulating soluble interleukin (IL)-6 receptor (sIL-6R) and IL-6R expression on CD4+ T cells (CD4+ IL-6R+ T cells) in chronic hepatitis B (CHB) patients.MethodsOne hundred and thirty-three subjects, including 72 CHB patients, 27 asymptomatic carriers, eight acute hepatitis B (AHB) patients, and 26 healthy donors were included in this study. Plasma IL-6 and sIL-6R levels were measured by enzyme-linked immunosorbent assay (ELISA); the frequency of CD4+ IL-6R+ T cells was detected by flow cytometry analysis.ResultsOur data showed a significant increase in plasma sIL-6R levels and the frequency of CD4+ IL-6R+ T cells in peripheral blood in CHB patients compared to asymptomatic carriers and healthy controls (both p<0.05). The elevated prevalence of CD4+ IL-6R+ T cells was positively associated with increased serum alanine aminotransferase levels in CHB patients (r = 0.316, p = 0.007), but was not correlated with serum hepatitis B virus (HBV) DNA load. Moreover, CHB patients with an HBV DNA load >1.0×106 copies/ml had a lower level of plasma sIL-6R than those with an HBV DNA load <1.0×106 copies/ml.ConclusionsCirculating sIL-6R and CD4+ IL-6R+ T cells were increased in CHB patients. Elevated plasma sIL-6R is probably associated with HBV elimination, and CD4+ IL-6R+ T cells in peripheral blood might contribute to the pathogenesis of liver injury in CHB patients

    Characterization of Soybean Protein Adhesives Modified by Xanthan Gum

    Get PDF
    The aim of this study was to provide a basis for the preparation of medical adhesives from soybean protein sources. Soybean protein (SP) adhesives mixed with different concentrations of xanthan gum (XG) were prepared. Their adhesive features were evaluated by physicochemical parameters and an in vitro bone adhesion assay. The results showed that the maximal adhesion strength was achieved in 5% SP adhesive with 0.5% XG addition, which was 2.6-fold higher than the SP alone. The addition of XG significantly increased the hydrogen bond and viscosity, as well as increased the β-sheet content but decreased the α-helix content in the second structure of protein. X-ray diffraction data showed significant interactions between SP molecules and XG. Scanning electron microscopy observations showed that the surface of SP adhesive modified by XG was more viscous and compact, which were favorable for the adhesion between the adhesive and bone. In summary, XG modification caused an increase in the hydrogen bonding and zero-shear viscosity of SP adhesives, leading to a significant increase in the bond strength of SP adhesives onto porcine bones

    Melatonin Supplementation, a Strategy to Prevent Neurological Diseases through Maintaining Integrity of Blood Brain Barrier in Old People

    Get PDF
    Blood brain barrier (BBB) plays a crucial role in maintaining homeostasis of microenvironment that is essential to neural function of the central nervous system (CNS). When facing various extrinsic or intrinsic stimuli, BBB is damaged which is an early event in pathogenesis of a variety of neurological diseases in old patients including acute and chronic cerebral ischemia, Alzheimer’s disease and etc. Treatments that could maintain the integrity of BBB may prevent neurological diseases following various stimuli. Old people often face a common stress of sepsis, during which lipopolysaccharide (LPS) is released into circulation and the integrity of BBB is damaged. Of note, there is a significant decrease of melatonin level in old people and animal. Melatonin has been shown to preserves BBB integrity and permeability via a variety of pathways: inhibition of matrix metalloproteinase-9 (MMP-9), inhibition of NADPH oxidase-2, and impact on silent information regulator 1 (SIRT1) and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. More important, a recent study showed that melatonin supplementation alleviates LPS-induced BBB damage in old mice through activating AMP-activated protein kinase (AMPK) and inhibiting gp91phox, suggesting that melatonin supplementation may help prevent neurological diseases through maintaining the integrity of BBB in old people

    Elevated IL-6 Receptor Expression on CD4+ T Cells contributes to the increased Th17 Responses in patients with Chronic Hepatitis B

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased numbers of Interleukin-17-producing CD4<sup>+ </sup>T cells (Th17) have been found in association with hepatitis B virus (HBV)-induced liver injury. However, the mechanism underlying the increase of Th17 responses in patients with HBV infection remains unclear. In this study, we investigate the possible regulatory mechanisms of increased Th17 responses in patients with chronic hepatitis B(CHB).</p> <p>Methods</p> <p>Th17 response and IL-6R expression on CD4<sup>+ </sup>T cells in peripheral blood samples were determined by flow cytometry. Cytokines TGF-β, IL-1β, IL-6 and IL-17 in plasma and/or supernatant samples were determined by ELISA and the IL-17 and IL-6R mRNA levels were quantified by quantitative real-time reverse polymerase chain reaction.</p> <p>Results</p> <p>All these data indicated that the frequency of periphery Th17 cells is significantly correlated with the percentage of CD4<b><sup>+ </sup></b>T cells expressing IL-6R in CHB patients. CD4<sup>+ </sup>T cells from patients with CHB, but not those from healthy donors, produced higher levels of IL-17 and had more IL-6R expression upon stimulation with the HBV core antigen (HBcAg) in vitro. The PMA/ionomycin and HBcAg -stimulated up-regulation of IL-17 production by CD4<sup>+ </sup>T cells could be reversed by a neutralizing antibody against IL-6R.</p> <p>Conclusion</p> <p>we showed that enhancement of IL-6R expression on CD4<sup>+ </sup>T cells upon HBV infection contributes to increased Th17 response in patients with CHB.</p

    Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase

    Get PDF
    In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, the presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNgamma), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that DeltacydA mutants were hypersusceptible to the low pH encountered in IFNgamma-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs

    Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase [preprint]

    Get PDF
    In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant. However, presence of two terminal oxidases in this obligate pathogen implies that respiratory requirements might change during infection. We report that the cytochrome bd oxidase is specifically required for resisting the adaptive immune response. While the bd oxidase was dispensable for growth in resting macrophages and the establishment of infection in mice, this complex was necessary for optimal fitness after the initiation of adaptive immunity. This requirement was dependent on lymphocyte-derived interferon gamma (IFNγ), but did not involve nitrogen and oxygen radicals that are known to inhibit respiration in other contexts. Instead, we found that ΔcydA mutants were hypersusceptible to the low pH encountered in IFNγ-activated macrophages. Unlike wild type Mtb, cytochrome bd-deficient bacteria were unable to sustain a maximal oxygen consumption rate (OCR) at low pH, indicating that the remaining cytochrome bc1/aa3 complex is preferentially inhibited under acidic conditions. Consistent with this model, the potency of the cytochrome bc1/aa3 inhibitor, Q203, is dramatically enhanced at low pH. This work identifies a critical interaction between host immunity and pathogen respiration that influences both the progression of the infection and the efficacy of potential new TB drugs

    Y2O3 nanosheets as slurry abrasives for chemical-mechanical planarization of copper

    Get PDF
    Abstract Continued reduction in feature dimension in integrated circuits demands high degree of flatness after chemical mechanical polishing. Here we report using new yttrium oxide (Y2O3) nanosheets as slurry abrasives for chemical-mechanical planarization (CMP) of copper. Results showed that the global planarization was improved by 30% using a slurry containing Y2O3 nanosheets in comparison with a standard industrial slurry. During CMP, the two-dimensional square shaped Y2O3 nanosheet is believed to induce the low friction, the better rheological performance, and the laminar flow leading to the decrease in the within-wafer-non-uniformity, surface roughness, as well as dishing. The application of the two-dimensional nanosheets as abrasive in CMP would increase the manufacturing yield of integrated circuits.</jats:p

    Mycobacterium tuberculosis -Induced Upregulation of the COX-2/mPGES-1 Pathway in Human Macrophages Is Abrogated by Sulfasalazine

    Get PDF
    Macrophages are the primary human host cells of intracellular Mycobacterium tuberculosis ( M.tb ) infection, where the magnitude of inflammatory reactions is crucial for determining the outcome of infection. Previously, we showed that the anti-inflammatory drug sulfasalazine (SASP) significantly reduced the M.tb bactericidal burden and histopathological inflammation in mice. Here, we asked which genes in human inflammatory macrophages are affected upon infection with M.tb and how would potential changes impact the functional state of macrophages. We used a flow cytometry sorting system which can distinguish the dead and alive states of M.tb harbored in human monocyte-derived macrophages (MDM). We found that the expression of cyclooxygenase-2 and microsomal prostaglandin E 2 synthase (mPGES)-1 increased significantly in tagRFP + MDM which were infected with alive M.tb . After exposure of polarized M1-MDM to M.tb (H37Rv strain)-conditioned medium (MTB-CM) or to the M.tb -derived 19-kD antigen, the production of PGE 2 and pro-inflammatory cytokines increased 3- to 4-fold. Upon treatment of M1-MDM with SASP, the MTB-CM-induced expression of COX-2 and the release of COX products and cytokines decreased. Elevation of PGE 2 in M1-MDM upon MTB-CM stimulation and modulation by SASP correlated with the activation of the NF-κB pathway. Together, infection of human macrophages by M.tb strongly induces COX-2 and mPGES-1 expression along with massive PGE 2 formation which is abrogated by the anti-inflammatory drug SASP
    corecore