13 research outputs found

    Modelling the biological performance of a side-stream membrane bioreactor

    No full text

    A novel single-stage process integrating simultaneous COD oxidation, partial nitritation-denitritation and anammox (SCONDA) for treating ammonia-rich organic wastewater

    No full text
    In this study, simultaneous carbon oxidation, partial nitritation, denitritation and anammox (SCONDA) was successfully integrated into a one-stage sequencing biofilm batch reactor for treating ammonia-rich organic wastewater with carbon to nitrogen (C/N) ratio of 3. The results showed that 94.3% of COD removal together with 92.6% NH4+-N and 88% TN removal were achieved via SCONDA. High-throughout sequencing analysis further revealed that the microbial community developed in the proposed system was primarily dominated by heterotrophic bacteria (e.g. Thauera, Azovibrio, Ohtaekwangia, Azospira), autotrophic bacteria (e.g. Nitrosomona) and unclassified genus of anammox bacterium, which were all essential for COD and N removal via SCONDA. The observed spatial distributions of the functional species in stratified biofilms were found to be crucial for successful SCONDA at the low dissolved oxygen of 1.3 mg/L. The integrated SCONDA system is expected to offer a promising alternative for advanced nitrogen and organic removal from high-ammonia organic wastewater

    Modeling the Submergence Depth of Oil Well States and Its Applications

    No full text
    Obtaining the liquid storage state of oil wells in real time is very important for oilfield production. In this paper, under the premise of fully considering the transformation factors of full-pumping and nonfull-pumping states of oil wells, submergence depth models suitable for full- and nonfull-pumping wells are constructed. To reduce the application complexity of the models, parameter-reduction processing is performed to enhance the usability of the models. By analyzing the change trend of the submergence depth during the rising, maintaining, and falling of the oil well in the full-pumping state and nonfull-pumping state models, the judgment criteria for the transition of the oil well state are provided. On this basis, the application methods of nonlinear interpolation and least squares curve-fitting numerical solutions of submergence depth models are studied, and the unique existence of the solution of the corresponding one-variable nonlinear characteristic equation in the (0, 1) open interval is proven. Finally, the error estimation of the numerical solution is carried out, the calculation formula of the number of iterations for the numerical solution of the dichotomy is provided, and the error of the relevant numerical solution is verified

    Multifunctional Polydopamine-Based Nanoparticles for Dual-Mode Imaging Guided Targeted Therapy of Lupus Nephritis

    No full text
    Lupus nephritis (LN) is a common and refractory inflammation of the kidneys caused by systemic lupus erythematosus. Diagnosis and therapies at this stage are inefficient or have severe side effects. In recent years, nanomedicines show great potential for imaging diagnosis and controlled drug release. Herein, we developed a polydopamine (PDA)-based nanocarrier modified with Fe3O4 and Pt nanoparticles and loaded with necrostatin-1 (Nec-1) for the bimodal imaging and therapy of LN. Results demonstrate that Nec-1/PDA@Pt-Fe3O4 nanocarrier exhibits good biocompatibility. Nec-1, as an inhibitor of receptor-interacting protein 1 kinase, can be used to inhibit receptor-interacting protein 1 kinase activity and then reduces inflammation due to LN. Experiments in vitro and in the LN mouse model confirmed that the nanocarrier can reduce neutrophil extracellular traps (NETs) production by RIPK1 and alleviate the progression of inflammation. Previous studies proved that Pt nanoparticles can catalyze H2O2 to produce oxygen. A blood oxygen graph of mouse photoacoustic tomography confirmed that Nec-1/PDA@Pt-Fe3O4 can generate oxygen to fight against the hypoxic microenvironment of LN. PDA and Fe3O4 are used as photographic developers for photoacoustic or magnetic resonance imaging. The preliminary imaging results support Nec-1/PDA@Pt-Fe3O4 potential for photoacoustic/magnetic resonance dual-mode imaging, which can accurately and non-invasively monitor microscopic changes due to diseases. Nec-1/PDA@Pt-Fe3O4 combining these advantages exhibited outstanding performance in LN imaging and therapy. This work offers valuable insights into LN diagnosis and therapy

    Patient-reported outcome measures in functional dyspepsia: a systematic review and COSMIN analysis

    No full text
    Abstract Background Functional dyspepsia (FD) as a type of disorders of brain-gut interaction (DBGI), patient self-reporting of its symptoms becomes an important component of clinical outcome assessment. We performed a systematic review using Consensus Based Standards for the Selection of Health Measurement Instruments (COSMIN) guidelines to identify the best available patient-reported outcome measure (PROM) of FD. Methods The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched four databases with no date limit, looking for previously confirmed PROMs for evaluating FD symptoms. An overall rating was then assigned based upon COSMIN guidelines, and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to assess the level of evidence for psychometric properties of included PROMs. Results Thirty articles covering outcome indicators of 24 patient reports were included. The Leuven Postprandial Distress Scale (LPDS) showed adequate content validity and moderate quality evidence of adequate internal consistency to generate an A recommendation. Conclusion LPDS is currently the most recommended PROM for patient self-reported FD symptoms. However, it fails to assess two important areas of cross-cultural validity/ measurement invariance and measurement error. Future research can be continuously improved on this basis

    m6A RNA methylation regulators predict prognosis and indicate characteristics of tumour microenvironment infiltration in acute myeloid leukaemia

    No full text
    Patients with acute myeloid leukaemia (AML) have poor prognoses and low overall survival (OS) rates owing to its heterogeneity and the complexity of its tumour microenvironment (TME). N6-methyladenosine (m6A) modification plays a key role in the initiation and progression of haematopoietic malignancies. However, the underlying function of m6A regulators in AML remains elusive. This study thoroughly analysed the m6A modification features of 177 AML patients based on 22 m6A regulators. Utilizing unsupervised clustering, we determined three distinct m6A modification patterns related to different biological functions, TME cell-infiltrating characteristics and clinical outcomes. Additionally, a risk score was constructed based on six m6A regulators-associated prognostic signatures and was validated as an independent and valuable prognostic factor for AML. Patients with a low-risk score exhibited better survival than those with a high-risk score. Many m6A regulators were aberrantly expressed in AML, among which METTL14, YTHDC2, ZC3H13 and RBM15 were observed to be associated with the OS of AML. In addition, these four m6A regulators were found to be noticeably related to the immune checkpoint inhibitor (ICI) treatments. Finally, we verified the expression levels of these four m6A regulators in AML and healthy samples and three groups of AML patients with different risk categories. Collectively, our study indicates that the m6A modification pattern is involved in TME immune-infiltrating characteristics and prognosis in AML. A better understanding of the m6A modification pattern will help enhance our knowledge of the molecular mechanisms of AML and develop potential prognosis prediction indicators and more effective immunotherapeutic strategies

    Deletion of Mettl3 in mesenchymal stem cells promotes acute myeloid leukemia resistance to chemotherapy

    No full text
    Abstract Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-Cre ERT2 ;Mettl3 fl/+ mice with Mettl3 fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML
    corecore