2,058 research outputs found
Topological Dirac states beyond orbitals for silicene on SiC(0001) surface
The discovery of intriguing properties related to the Dirac states in
graphene has spurred huge interest in exploring its two-dimensional group-IV
counterparts, such as silicene, germanene, and stanene. However, these
materials have to be obtained via synthesizing on substrates with strong
interfacial interactions, which usually destroy their intrinsic
()-orbital Dirac states. Here we report a theoretical study on the
existence of Dirac states arising from the orbitals instead of
orbitals in silicene on 4H-SiC(0001), which survive in spite of the strong
interfacial interactions. We also show that the exchange field together with
the spin-orbital coupling give rise to a detectable band gap of 1.3 meV. Berry
curvature calculations demonstrate the nontrivial topological nature of such
Dirac states with a Chern number , presenting the potential of realizing
quantum anomalous Hall effect for silicene on SiC(0001). Finally, we construct
a minimal effective model to capture the low-energy physics of this system.
This finding is expected to be also applicable to germanene and stanene, and
imply great application potentials in nanoelectronics.Comment: 6 Figures , Accepted by Nano Letter
Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration
Optical complex materials offer unprecedented opportunity to engineer
fundamental band dispersion which enables novel optoelectronic functionality
and devices. Exploration of photonic Dirac cone at the center of momentum space
has inspired an exceptional characteristic of zero-index, which is similar to
zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index
photonic crystals provide an in-plane mechanism such that the energy of the
propagating waves can be well confined along the chip direction. A
straightforward example is to achieve the anomalous focusing effect without
longitudinal spherical aberration, when the size of zero-index lens is large
enough. Here, we designed and fabricated a prototype of zero-refractive-index
lens by comprising large-area silicon nanopillar array with plane-concave
profile. Near-zero refractive index was quantitatively measured near 1.55 um
through anomalous focusing effect, predictable by effective medium theory. The
zero-index lens was also demonstrated to perform ultralow longitudinal
spherical aberration. Such IC compatible device provides a new route to
integrate all-silicon zero-index materials into optical communication, sensing,
and modulation, and to study fundamental physics on the emergent fields of
topological photonics and valley photonics.Comment: 14 pages, 4 figure
5 GHz TMRT observations of 71 pulsars
We present integrated pulse profiles at 5~GHz for 71 pulsars, including eight
millisecond pulsars (MSPs), obtained using the Shanghai Tian Ma Radio Telescope
(TMRT). Mean flux densities and pulse widths are measured. For 19 normal
pulsars and one MSP, these are the first detections at 5~GHz and for a further
19, including five MPSs, the profiles have a better signal-to-noise ratio than
previous observations. Mean flux density spectra between 400~MHz and 9~GHz are
presented for 27 pulsars and correlations of power-law spectral index are found
with characteristic age, radio pseudo-luminosity and spin-down luminosity. Mode
changing was detected in five pulsars. The separation between the main pulse
and interpulse is shown to be frequency independent for six pulsars but a
frequency dependence of the relative intensity of the main pulse and interpulse
is found. The frequency dependence of component separations is investigated for
20 pulsars and three groups are found: in seven cases the separation between
the outmost leading and trailing components decreases with frequency, roughly
in agreement with radius-to-frequency mapping; in eleven cases the separation
is nearly constant; in the remain two cases the separation between the outmost
components increases with frequency. We obtain the correlations of pulse widths
with pulsar period and estimate the core widths of 23 multi-component profiles
and conal widths of 17 multi-component profiles at 5.0~GHz using Gaussian
fitting and discuss the width-period relationship at 5~GHz compared with the
results at at 1.0~GHz and 8.6~GHz.Comment: 46 pages, 14 figures, 8 Tables, accepted by Ap
The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1-xSrx)(Zn1-yMny)AsO
(La1-xSrx)(Zn1-yMny)AsO is a two dimensional diluted ferromagnetic
semiconductor that has the advantage of decoupled charge and spin doping. The
substitution of Sr2+ for La3+ and Mn2+ for Zn2+ into the parent semiconductor
LaZnAsO introduces hole carriers and spins, respectively. This advantage
enables us to investigate the influence of carrier doping on the ferromagnetic
ordered state through the control of Sr concentrations in
(La1-xSrx)(Zn0.9Mn0.1)AsO. 10 % Sr doping results in a ferromagnetic ordering
below TC ~ 30 K. Increasing Sr concentration up to 30 % heavily suppresses the
Curie temperature and saturation moments. Neutron scattering measurements
indicate that no structural transition occurs for (La0.9Sr0.1)(Zn0.9Mn0.1)AsO
below 300 K.Comment: Submitted to EP
Clinical Features and Genetic Analysis of 20 Chinese Patients with X-Linked Hyper-IgM Syndrome
X-linked hyper-IgM syndrome (XHIGM) is one type of primary immunodeficiency diseases, resulting from defects in the CD40 ligand/CD40 signaling pathways. We retrospectively analyzed the clinical and molecular features of 20 Chinese patients diagnosed and followed up in hospitals affiliated to Shanghai Jiao Tong University School of Medicine from 1999 to 2013. The median onset age of these patients was 8.5 months (range: 20 days–21 months). Half of them had positive family histories, with a shorter diagnosis lag. The most common symptoms were recurrent sinopulmonary infections (18 patients, 90%), neutropenia (14 patients, 70%), oral ulcer (13 patients, 65%), and protracted diarrhea (13 patients, 65%). Six patients had BCGitis. Six patients received hematopoietic stem cell transplantations and four of them had immune reconstructions and clinical remissions. Eighteen unique mutations in CD40L gene were identified in these 20 patients from 19 unrelated families, with 12 novel mutations. We compared with reported mutation results and used bioinformatics software to predict the effects of mutations on the target protein. These mutations reflected the heterogeneity of CD40L gene and expanded our understanding of XHIGM
Requirements-driven self-repairing against environmental failures
Self-repairing approaches have been proposed to alleviate the runtime requirements satisfaction problem by switching to appropriate alternative solutions according to the feedback monitored. However, little has been done formally on analyzing the relations between specific environmental failures and corresponding repairing decisions, making it a challenge to derive a set of alternative solutions to withstand possible environmental failures at runtime. To address these challenges, we propose a requirements-driven self-repairing approach against environmental failures, which combines both development-time and runtime techniques. At the development phase, in a stepwise manner, we formally analyze the issue of self-repairing against environmental failures with the support of the model checking technique, and then design a sufficient and necessary set of alternative solutions to withstand possible environmental failures. The runtime part is a runtime self-repairing mechanism that monitors the operating environment for unsatisfiable situations, and makes self-repairing decisions among alternative solutions in response to the detected environmental failures
Restricted phase space thermodynamics of Einstein-power-Yang-Mills AdS black hole
We consider the thermodynamics of the Einstein-Power-Yang-Mills AdS black
holes in the context of the gauge-gravity duality. Under this framework, the
Newton's gravitational constant and the cosmological constant are varied in the
system. We rewrite the thermodynamical first law in a more extended form
containing both the pressure and the central charge of the dual conformal field
theory, i.e., the restricted phase transition formula. A novel phenomena
arises: the dual quantity of pressure is the effective volume, not the
geometric one. That is leading to a new behavior of the Van de Waals-like phase
transition for this system with the fixed central charge: the supercritical
phase transition. From the Ehrenfest's scheme perspective, we check out the
second-order phase transition of the EPYM AdS black hole. Furthermore the
effect of non-linear Yang-Mills parameter on these thermodynamical properties
is also investigated
- …