9,570 research outputs found

    Parton Energy Loss and the Generalized Jet Transport Coefficient

    Full text link
    We revisit radiative parton energy loss in deeply inelastic scattering (DIS) off a large nucleus within the perturbative QCD approach. We calculate the gluon radiation spectra induced by double parton scattering in DIS without collinear expansion in the transverse momentum of initial gluons as in the original high-twist approach. The final radiative gluon spectrum can be expressed in terms of the convolution of hard partonic parts and unintegrated or transverse momentum dependent (TMD) quark-gluon correlations. The TMD quark-gluon correlation can be factorized approximately as a product of initial quark distribution and TMD gluon distribution which can be used to define the generalized or TMD jet transport coefficient. Under the static scattering center and soft radiative gluon approximation, we recover the result by Gylassy-Levai-Vitev (GLV) in the first order of the opacity expansion. The difference as a result of the soft radiative gluon approximation is investigated numerically under the static scattering center approximation.Comment: 33 pages in RevTeX with 30 figures, final version appeared in PRD with additional typos correcte

    Background Subtraction via Generalized Fused Lasso Foreground Modeling

    Full text link
    Background Subtraction (BS) is one of the key steps in video analysis. Many background models have been proposed and achieved promising performance on public data sets. However, due to challenges such as illumination change, dynamic background etc. the resulted foreground segmentation often consists of holes as well as background noise. In this regard, we consider generalized fused lasso regularization to quest for intact structured foregrounds. Together with certain assumptions about the background, such as the low-rank assumption or the sparse-composition assumption (depending on whether pure background frames are provided), we formulate BS as a matrix decomposition problem using regularization terms for both the foreground and background matrices. Moreover, under the proposed formulation, the two generally distinctive background assumptions can be solved in a unified manner. The optimization was carried out via applying the augmented Lagrange multiplier (ALM) method in such a way that a fast parametric-flow algorithm is used for updating the foreground matrix. Experimental results on several popular BS data sets demonstrate the advantage of the proposed model compared to state-of-the-arts

    On the Convergence of the Self-Consistent Field Iteration in Kohn-Sham Density Functional Theory

    Full text link
    It is well known that the self-consistent field (SCF) iteration for solving the Kohn-Sham (KS) equation often fails to converge, yet there is no clear explanation. In this paper, we investigate the SCF iteration from the perspective of minimizing the corresponding KS total energy functional. By analyzing the second-order Taylor expansion of the KS total energy functional and estimating the relationship between the Hamiltonian and the part of the Hessian which is not used in the SCF iteration, we are able to prove global convergence from an arbitrary initial point and local linear convergence from an initial point sufficiently close to the solution of the KS equation under assumptions that the gap between the occupied states and unoccupied states is sufficiently large and the second-order derivatives of the exchange correlation functional are uniformly bounded from above. Although these conditions are very stringent and are almost never satisfied in reality, our analysis is interesting in the sense that it provides a qualitative prediction of the behavior of the SCF iteration

    Video Captioning via Hierarchical Reinforcement Learning

    Full text link
    Video captioning is the task of automatically generating a textual description of the actions in a video. Although previous work (e.g. sequence-to-sequence model) has shown promising results in abstracting a coarse description of a short video, it is still very challenging to caption a video containing multiple fine-grained actions with a detailed description. This paper aims to address the challenge by proposing a novel hierarchical reinforcement learning framework for video captioning, where a high-level Manager module learns to design sub-goals and a low-level Worker module recognizes the primitive actions to fulfill the sub-goal. With this compositional framework to reinforce video captioning at different levels, our approach significantly outperforms all the baseline methods on a newly introduced large-scale dataset for fine-grained video captioning. Furthermore, our non-ensemble model has already achieved the state-of-the-art results on the widely-used MSR-VTT dataset.Comment: CVPR 2018, with supplementary materia
    • …
    corecore