5,348 research outputs found
Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation
Despite the tremendous achievements of deep convolutional neural networks
(CNNs) in many computer vision tasks, understanding how they actually work
remains a significant challenge. In this paper, we propose a novel two-step
understanding method, namely Salient Relevance (SR) map, which aims to shed
light on how deep CNNs recognize images and learn features from areas, referred
to as attention areas, therein. Our proposed method starts out with a
layer-wise relevance propagation (LRP) step which estimates a pixel-wise
relevance map over the input image. Following, we construct a context-aware
saliency map, SR map, from the LRP-generated map which predicts areas close to
the foci of attention instead of isolated pixels that LRP reveals. In human
visual system, information of regions is more important than of pixels in
recognition. Consequently, our proposed approach closely simulates human
recognition. Experimental results using the ILSVRC2012 validation dataset in
conjunction with two well-established deep CNN models, AlexNet and VGG-16,
clearly demonstrate that our proposed approach concisely identifies not only
key pixels but also attention areas that contribute to the underlying neural
network's comprehension of the given images. As such, our proposed SR map
constitutes a convenient visual interface which unveils the visual attention of
the network and reveals which type of objects the model has learned to
recognize after training. The source code is available at
https://github.com/Hey1Li/Salient-Relevance-Propagation.Comment: 35 pages, 15 figure
Self-organization and phase transition in financial markets with multiple choices
Market confidence is essential for successful investing. By incorporating
multi-market into the evolutionary minority game, we investigate the effects of
investor beliefs on the evolution of collective behaviors and asset prices.
When there exists another investment opportunity, market confidence, including
overconfidence and under-confidence, is not always good or bad for investment.
The roles of market confidence is closely related to market impact. For low
market impact, overconfidence in a particular asset makes an investor become
insensitive to losses and a delayed strategy adjustment leads to a decline in
wealth, and thereafter, one's runaway from the market. For high market impact,
under-confidence in a particular asset makes an investor over-sensitive to
losses and one's too frequent strategy adjustment leads to a large fluctuation
in asset prices, and thereafter, a decrease in the number of agents. At an
intermediate market impact, the phase transition occurs. No matter what the
market impact is, an equilibrium between different markets exists, which is
reflected in the occurrence of similar price fluctuations in different markets.
A theoretical analysis indicates that such an equilibrium results from the
coupled effects of strategy updating and shift in investment. The runaway of
the agents trading a specific asset will lead to a decline in the asset price
volatility and such a decline will be inhibited by the clustering of the
strategies. A uniform strategy distribution will lead to a large fluctuation in
asset prices and such a fluctuation will be suppressed by the decrease in the
number of agents in the market. A functional relationship between the price
fluctuations and the numbers of agents is found
A generalized public goods game with coupling of individual ability and project benefit
Facing a heavy task, any single person can only make a limited contribution
and team cooperation is needed. As one enjoys the benefit of the public goods,
the potential benefits of the project are not always maximized and may be
partly wasted. By incorporating individual ability and project benefit into the
original public goods game, we study the coupling effect of the four
parameters, the upper limit of individual contribution, the upper limit of
individual benefit, the needed project cost and the upper limit of project
benefit on the evolution of cooperation. Coevolving with the individual-level
group size preferences, an increase in the upper limit of individual benefit
promotes cooperation while an increase in the upper limit of individual
contribution inhibits cooperation. The coupling of the upper limit of
individual contribution and the needed project cost determines the critical
point of the upper limit of project benefit, where the equilibrium frequency of
cooperators reaches its highest level. Above the critical point, an increase in
the upper limit of project benefit inhibits cooperation. The evolution of
cooperation is closely related to the preferred group-size distribution. A
functional relation between the frequency of cooperators and the dominant group
size is found
Coupled effects of local movement and global interaction on contagion
By incorporating segregated spatial domain and individual-based linkage into
the SIS (susceptible-infected-susceptible) model, we investigate the coupled
effects of random walk and intragroup interaction on contagion. Compared with
the situation where only local movement or individual-based linkage exists, the
coexistence of them leads to a wider spread of infectious disease. The roles of
narrowing segregated spatial domain and reducing mobility in epidemic control
are checked, these two measures are found to be conducive to curbing the spread
of infectious disease. Considering heterogeneous time scales between local
movement and global interaction, a log-log relation between the change in the
number of infected individuals and the timescale is found. A theoretical
analysis indicates that the evolutionary dynamics in the present model is
related to the encounter probability and the encounter time. A functional
relation between the epidemic threshold and the ratio of shortcuts, and a
functional relation between the encounter time and the timescale are
found
Before Becoming a World Heritage: Spatiotemporal Dynamics and Spatial Dependency of the Soundscapes in Kulangsu Scenic Area, China
Kulangsu is a famous scenic area in China and a World Heritage Site. It is important to obtain knowledge with regard to the status of soundscape and landscape resources and their interrelationships in Kulangsu before it became a World Heritage. The objective of this study was to explore the spatial dependency of the soundscapes in Kulangsu, based on the spatiotemporal dynamics of soundscape and landscape perceptions, including perceived sound sources, soundscape quality, and landscape satisfaction degree, and the spatial landscape characteristics, including the distance to green spaces, normalized difference vegetation index, and landscape spatial patterns. The results showed that perception of soundscape and landscape were observed in significant spatiotemporal dynamics, and the dominance of biological sounds in all sampling periods and human sounds in the evening indicated that Kulangsu scenic area had a good natural environment and a developed night-time economy, respectively. The green spaces and commercial lands may contribute to both the soundscape pleasantness and eventfulness. Moreover, the soundscape quality was dependent on the sound dominant degree and landscape satisfaction degree but not on the landscape characteristics. The GWR model had better goodness of fit than the OLS model, and possible non-linear relationships were found between the soundscape pleasantness and the variables of perceived sound sources and landscape satisfaction degree. The GWR models with spatial stationarity were found to be more effective in understanding the spatial dependence of soundscapes. In particular, the data applied should ideally include a complete temporal dimension to obtain a relatively high fitting accuracy of the model. These findings can provide useful data support and references for future planning and design practices, and management strategies for the soundscape resources in scenic areas and World Heritage Sites
- …