317 research outputs found

    Varioloid A, a new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative from the marine alga-derived endophytic fungus Paecilomyces varotii EN-291

    Get PDF
    A new indolyl-6,10b-dihydro-5aH-[1]benzofuro[2,3-b]indole derivative, varioloid A (1), was isolated from the marine alga-derived endophytic fungus Paecilomyces variotii EN-291. Its structure was elucidated on the basis of extensive analysis of 1D and 2D NMR data and the absolute configuration was determined by time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) calculations. A similar compound, whose planar structure was previously described but the relative and absolute configurations and 13C NMR data were not reported, was also identified and was tentatively named as varioloid B (2). Both compounds 1 and 2 exhibited cytotoxicity against A549, HCT116, and HepG2 cell lines, with IC50 values ranging from 2.6 to 8.2 µg/mL

    Biogeochemistry of dimethylsulfide in the South China Sea

    Get PDF
    The distribution of dimethylsulfide (DMS) was studied in surface seawater and vertical profiles at nineteen stations in the Nansha Islands sea area of the South China Sea. The concentrations of DMS in surface-layer (0-1 m) seawater vary from 64 to 140 ng S/L with high values found in the productive regions, in agreement with the horizontal distribution of chlorophyll a. The vertical profiles of DMS show a single peak shape with maximum concentrations occurring at depths between 30-75 m. The DMS concentrations are correlated with chlorophyll a levels both in the upper 20 m of seawater as well as in vertical profiles. A clear diel variation in DMS concentration is observed at the 50-m water layer at a fixed station with the highest DMS concentration found in the late afternoon. The DMS concentrations are associated with environmental factors such as seawater temperature, dissolved O2 and nutrient contents. Although DMS is correlated to chlorophyll a, the phytoplankton species is a major factor responsible for the obviously higher DMS concentration than expected from the phytoplankton biomass in this sea area. The sea-to-air flux of DMS from this sea area is calculated to be 7.6 µmol m-2 d-1

    Recent Advances on the Molecular Mechanism and Clinical Trials of Venous Thromboembolism.

    Get PDF
    Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for the future treatment of venous thrombosis

    Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Get PDF
    The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice

    Temporal Effects of High Fishmeal Diet on Gut Microbiota and Immune Response in Clostridium perfringens-Challenged Chickens

    Get PDF
    Necrotic enteritis (NE) caused by Clostridium perfringens is responsible for huge financial losses in the poultry industry annually. A diet highly supplemented with fishmeal is one factor predisposing chickens to the development of clinical NE. However, the effects of fishmeal-rich diets on the gut microbiota and immune response in chickens with C. perfringens challenge over the long-term are not well-understood. Here, a chicken NE model was established in which chickens were fed high fishmeal diet and subsequently infected with C. perfringens (FM/CP). Two control groups of chickens, one that was not infected and had a high fishmeal feeding (FM) and another group only infected with C. perfringens with basic diets (CP), were used as comparators. We analyzed the gut microbiota and immune response of the three groups at the age of 20, 24 [1 day post-infection (dpi)] and 30 days (7 dpi) using 16S rDNA sequencing and real-time PCR, respectively. We found that the composition of the gut microbiota had significant shifted in both the CP and FM/CP groups, although the CP group did not have intestinal lesions. The structure of the gut microbiota in C. perfringens-challenged chickens, independent of a high fishmeal diet, had the tendency to return to their non-infection state if the chickens no longer received C. perfringens challenge. Gut microbiota variation with time in challenged chickens with high fishmeal diet feeding was superimposed upon that of non-infected chickens with high fishmeal feeding. For the immune response, the relative expression of IL-8 in the ileum was significantly higher in infected chickens independent of high fishmeal feeding than in non-infected chickens. However, the expression of alpha 1-acid glycoprotein (AGP) and serum amyloid A (SAA) genes in chicken liver were significantly increased in FM/CP compared to the other groups. In conclusion, high fishmeal feeding induced significant changes to the structure of chicken gut microbiota over time and such changes provided an opening for C. perfringens infection to progress to NE. The relative expression of AGP and SAA in liver tissue may be used as diagnostic biomarkers for poultry NE but such an indication requires further investigation
    corecore