1,974 research outputs found

    A Self-Correcting Sequential Recommender

    Full text link
    Sequential recommendations aim to capture users' preferences from their historical interactions so as to predict the next item that they will interact with. Sequential recommendation methods usually assume that all items in a user's historical interactions reflect her/his preferences and transition patterns between items. However, real-world interaction data is imperfect in that (i) users might erroneously click on items, i.e., so-called misclicks on irrelevant items, and (ii) users might miss items, i.e., unexposed relevant items due to inaccurate recommendations. To tackle the two issues listed above, we propose STEAM, a Self-correcTing sEquentiAl recoMmender. STEAM first corrects an input item sequence by adjusting the misclicked and/or missed items. It then uses the corrected item sequence to train a recommender and make the next item prediction.We design an item-wise corrector that can adaptively select one type of operation for each item in the sequence. The operation types are 'keep', 'delete' and 'insert.' In order to train the item-wise corrector without requiring additional labeling, we design two self-supervised learning mechanisms: (i) deletion correction (i.e., deleting randomly inserted items), and (ii) insertion correction (i.e., predicting randomly deleted items). We integrate the corrector with the recommender by sharing the encoder and by training them jointly. We conduct extensive experiments on three real-world datasets and the experimental results demonstrate that STEAM outperforms state-of-the-art sequential recommendation baselines. Our in-depth analyses confirm that STEAM benefits from learning to correct the raw item sequences

    Modeling the clustering in citation networks

    Full text link
    For the study of citation networks, a challenging problem is modeling the high clustering. Existing studies indicate that the promising way to model the high clustering is a copying strategy, i.e., a paper copies the references of its neighbour as its own references. However, the line of models highly underestimates the number of abundant triangles observed in real citation networks and thus cannot well model the high clustering. In this paper, we point out that the failure of existing models lies in that they do not capture the connecting patterns among existing papers. By leveraging the knowledge indicated by such connecting patterns, we further propose a new model for the high clustering in citation networks. Experiments on two real world citation networks, respectively from a special research area and a multidisciplinary research area, demonstrate that our model can reproduce not only the power-law degree distribution as traditional models but also the number of triangles, the high clustering coefficient and the size distribution of co-citation clusters as observed in these real networks

    2-Methyl­sulfanyl-4-(3-pyrid­yl)pyrimidine

    Get PDF
    In the title compound, C10H9N3S, the dihedral angle between the aromatic rings is 8.09 (14)°. In the crystal, a C—H⋯N interaction links the molecules, forming chains

    Looking Through the Glass: Neural Surface Reconstruction Against High Specular Reflections

    Full text link
    Neural implicit methods have achieved high-quality 3D object surfaces under slight specular highlights. However, high specular reflections (HSR) often appear in front of target objects when we capture them through glasses. The complex ambiguity in these scenes violates the multi-view consistency, then makes it challenging for recent methods to reconstruct target objects correctly. To remedy this issue, we present a novel surface reconstruction framework, NeuS-HSR, based on implicit neural rendering. In NeuS-HSR, the object surface is parameterized as an implicit signed distance function (SDF). To reduce the interference of HSR, we propose decomposing the rendered image into two appearances: the target object and the auxiliary plane. We design a novel auxiliary plane module by combining physical assumptions and neural networks to generate the auxiliary plane appearance. Extensive experiments on synthetic and real-world datasets demonstrate that NeuS-HSR outperforms state-of-the-art approaches for accurate and robust target surface reconstruction against HSR. Code is available at https://github.com/JiaxiongQ/NeuS-HSR.Comment: 17 pages, 20 figure

    Plasmon-enhanced Stimulated Raman Scattering Microscopy with Single-molecule Detection Sensitivity

    Get PDF
    Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detection of sub-micromolar chromophores. However, label-free SRS detection of single biomolecules having extremely small Raman cross-sections (~10-30 cm2 sr-1) remains unreachable. Here, we demonstrate plasmon-enhanced stimulated Raman scattering (PESRS) microscopy with single-molecule detection sensitivity. Incorporating pico-Joule laser excitation, background subtraction, and a denoising algorithm, we obtained robust single-pixel SRS spectra exhibiting the statistics of single-molecule events. Single-molecule detection was verified by using two isotopologues of adenine. We further demonstrated the capability of applying PESRS for biological applications and utilized PESRS to map adenine released from bacteria due to starvation stress. PESRS microscopy holds the promise for ultrasensitive detection of molecular events in chemical and biomedical systems

    Bridgeness: A Local Index on Edge Significance in Maintaining Global Connectivity

    Full text link
    Edges in a network can be divided into two kinds according to their different roles: some enhance the locality like the ones inside a cluster while others contribute to the global connectivity like the ones connecting two clusters. A recent study by Onnela et al uncovered the weak ties effects in mobile communication. In this article, we provide complementary results on document networks, that is, the edges connecting less similar nodes in content are more significant in maintaining the global connectivity. We propose an index named bridgeness to quantify the edge significance in maintaining connectivity, which only depends on local information of network topology. We compare the bridgeness with content similarity and some other structural indices according to an edge percolation process. Experimental results on document networks show that the bridgeness outperforms content similarity in characterizing the edge significance. Furthermore, extensive numerical results on disparate networks indicate that the bridgeness is also better than some well-known indices on edge significance, including the Jaccard coefficient, degree product and betweenness centrality.Comment: 10 pages, 4 figures, 1 tabl
    corecore