51 research outputs found
Equivalence between two charged black holes in dynamics of orbits outside the event horizons
Using the FermiDirac distribution function, Balart and Vagenas gave a charged
spherically symmetric regular black hole, which is a solution of Einstein field
equations coupled to a nonlinear electrodynamics. In fact, the regular black
hole is a Reissner-Nordstrom (RN) black hole when a metric function is given a
Taylor expansion to first order approximations. It does not have a curvature
singularity at the origin,but the RN black hole does. Both black hole metrics
have horizons and similar asymptotic behaviors, and satisfy the weak energy
conditions everywhere. They are almost the same in photon effective potentials,
photon circular orbits and photon spheres outside the event horizons. There are
relatively minor differences between effective potentials, stable circular
orbits and innermost stable circular orbits of charged particles outside the
event horizons of the two black holes immersed in external magnetic fields.
Although the twomagnetized black holes allow different construction methods of
explicit symplectic integrators, they exhibit approximately consistent results
in the regular and chaotic dynamics of charged particles outside the event
horizons. Chaos gets strong as the magnetic field parameter or the magnitude of
negative Coulomb parameter increases, but becomes weak when the black hole
charge or the positive Coulomb parameter increases. A variation of dynamical
properties is not sensitive dependence on an appropriate increase of the black
hole charge. The basic equivalence between the two black hole gravitational
systems in the dynamics of orbits outside the event horizons is due to the two
metric functions having an extremely small difference. This implies that the RN
black hole is reasonably replaced by the regular black hole without curvature
singularity in many situations.Comment: 18 pages, 12 figure
Metformin Uniquely Prevents Thrombosis by Inhibiting Platelet Activation and mtDNA Release
Thrombosis and its complications are the leading cause of death in patients with diabetes. Metformin, a first-line therapy for type 2 diabetes, is the only drug demonstrated to reduce cardiovascular complications in diabetic patients. However, whether metformin can effectively prevent thrombosis and its potential mechanism of action is unknown. Here we show, metformin prevents both venous and arterial thrombosis with no significant prolonged bleeding time by inhibiting platelet activation and extracellular mitochondrial DNA (mtDNA) release. Specifically, metformin inhibits mitochondrial complex I and thereby protects mitochondrial function, reduces activated platelet-induced mitochondrial hyperpolarization, reactive oxygen species overload and associated membrane damage. In mitochondrial function assays designed to detect amounts of extracellular mtDNA, we found that metformin prevents mtDNA release. This study also demonstrated that mtDNA induces platelet activation through a DC-SIGN dependent pathway. Metformin exemplifies a promising new class of antiplatelet agents that are highly effective at inhibiting platelet activation by decreasing the release of free mtDNA, which induces platelet activation in a DC-SIGN-dependent manner. This study has established a novel therapeutic strategy and molecular target for thrombotic diseases, especially for thrombotic complications of diabetes mellitus
Nutrient regulation of biological nitrogen fixation across the tropical western North Pacific
Nitrogen fixation is critical for the biological productivity of the ocean, but clear mechanistic controls on this process remain elusive. Here, we investigate the abundance, activity, and drivers of nitrogen-fixing diazotrophs across the tropical western North Pacific. We find a basin-scale coherence of diazotroph abundances and N 2 fixation rates with the supply ratio of iron:nitrogen to the upper ocean. Across a threshold of increasing supply ratios, the abundance of nifH genes and N 2 fixation rates increased, phosphate concentrations decreased, and bioassay experiments demonstrated evidence for N 2 fixation switching from iron to phosphate limitation. In the northern South China Sea, supply ratios were hypothesized to fall around this critical threshold and bioassay experiments suggested colimitation by both iron and phosphate. Our results provide evidence for iron:nitrogen supply ratios being the most important factor in regulating the distribution of N 2 fixation across the tropical ocean
A longitudinal resource for population neuroscience of school-age children and adolescents in China
During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013–2022), the first ten-year stage of the lifespan CCNP (2013–2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0–17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the “Chinese Data-sharing Warehouse for In-vivo Imaging Brain” in the Chinese Color Nest Project (CCNP) – Lifespan Brain-Mind Development Data Community (https://ccnp.scidb.cn) at the Science Data Bank
Good learning environment of medical schools is an independent predictor for medical students’ study engagement
BackgroundStudy engagement is regarded important to medical students’ physical and mental wellbeing. However, the relationship between learning environment of medical schools and the study engagement of medical students was still unclear. This study was aimed to ascertain the positive effect of learning environment in study engagement.MethodsWe collected 10,901 valid questionnaires from 12 medical universities in China, and UWES-S was utilized to assess the study engagement levels. Then Pearson Chi-Square test and Welch’s ANOVA test were conducted to find the relationship between study engagement and learning environment, and subgroup analysis was used to eradicate possible influence of confounding factors. After that, a multivariate analysis was performed to prove learning environment was an independent factor, and we constructed a nomogram as a predictive model.ResultsWith Pearson Chi-Square test (p < 0.001) and Welch’s ANOVA test (p < 0.001), it proved that a good learning environment contributed to a higher mean of UWES scores. Subgroup analysis also showed statistical significance (p < 0.001). In the multivariate analysis, we could find that, taking “Good” as reference, “Excellent” (OR = 0.329, 95%CI = 0.295–0.366, p < 0.001) learning environment was conducive to one’s study engagement, while “Common” (OR = 2.206, 95%CI = 1.989–2.446, p < 0.001), “Bad” (OR = 2.349, 95%CI = 1.597–3.454, p < 0.001), and “Terrible” (OR = 1.696, 95%CI = 1.015–2.834, p = 0.044) learning environment only resulted into relatively bad study engagement. Depending on the result, a nomogram was drawn, which had predictive discrimination and accuracy (AUC = 0.680).ConclusionWe concluded that learning environment of school was an independent factor of medical student’s study engagement. A higher level of learning environment of medical school came with a higher level of medical students’ study engagement. The nomogram could serve as a predictive reference for the educators and researchers
Impact of electric charges on chaos in magnetized Reissner–Nordström spacetimes
Abstract We consider the motion of test particles around a Reissner–Nordström black hole immersed into a strong external magnetic field modifying the spacetime structure. When the particles are neutral, their dynamics are nonintegrable because the magnetic field acts as a gravitational effect, which destroys the existence of a fourth motion constant in the Reissner–Nordström spacetime. A time-transformed explicit symplectic integrator is used to show that the motion of neutral particles can be chaotic under some circumstances. When test particles have electric charges, their motions are subject to an electromagnetic field surrounding the black hole as well as the gravitational forces from the black hole and the magnetic field. It is found that increasing both the magnetic field and the particle energy or decreasing the particle angular momentum can strengthen the degree of chaos regardless of whether the particles are neutral or charged. The effect of varying the black hole positive charge on the dynamical transition from order to chaos is associated with the electric charges of particles. The dynamical transition of neutral particles has no sensitive dependence on a change of the black hole charge. An increase of the black hole charge weakens the chaoticity of positive charged particles, whereas enhances the chaoticity of negative charged particles. With the magnitude of particle charge increasing, chaos always gets stronger
Decision-Making Optimization of Risk-Seeking Retailer Managed Inventory Model in a Water Supply Chain
Water retailer managed inventory is a classical and inevitable inventory management mode in present economic society. Stochastic models can more clearly explain demand uncertainty and are closely related to water supply chains. Risk preferences are widely valued in behavioral operation management. Related to the risk preferences in inventory management, the research on risk aversion is dominant, while risk-seeking is insufficient. Based on the model assumptions, the risk-seeking retailer’s optimal decision-making inventory model with stochastic demand in a water supply chain is studied. The risk-seeking retailer’s optimal inventory quantity, optimal inventory cost, supplier profit, retailer profit, and the profit of the entire water supply chain are derived. The validity of the equations is proved. The sensitivity analysis of the risk-seeking retailer’s optimal inventory decision-making is carried out. The risk level effects on the five dimensions, the retail price, wholesale price, unit shortage cost, unit inventory cost, and unit residual value, are displayed through numerical simulation. The optimal inventory quantity and optimal inventory cost of the risk-seeking retailer are obtained
Study of Chaos in Rotating Galaxies Using Extended Force-Gradient Symplectic Methods
We take into account the dynamics of three types of models of rotating galaxies in polar coordinates in a rotating frame. Due to non-axisymmetric potential perturbations, the angular momentum varies with time, and the kinetic energy depends on the momenta and spatial coordinate. The existing explicit force-gradient symplectic integrators are not applicable to such Hamiltonian problems, but the recently extended force-gradient symplectic methods proposed in previous work are. Numerical comparisons show that the extended force-gradient fourth-order symplectic method with symmetry is superior to the standard fourth-order symplectic method but inferior to the optimized extended force-gradient fourth-order symplectic method in accuracy. The optimized extended algorithm with symmetry is used to explore the dynamical features of regular and chaotic orbits in these rotating galaxy models. The gravity effects and the degree of chaos increase with an increase in the number of radial terms in the series expansions of the potential. There are similar dynamical structures of regular and chaotical orbits in the three types of models for the same number of radial terms in the series expansions, energy and initial conditions
- …