14,770 research outputs found

    The spacetime structure of MOND with Tully-Fisher relation and Lorentz invariance violation

    Full text link
    It is believed that the modification of Newtonian dynamics (MOND) is possible alternate for dark matter hypothesis. Although Bekenstein's TeVeS supplies a relativistic version of MOND, one may still wish a more concise covariant formulism of MOND. In this paper, within covariant geometrical framwork, we present another version of MOND. We show the spacetime structure of MOND with properties of Tully-Fisher relation and Lorentz invariance violation.Comment: 6 pages. arXiv admin note: substantial text overlap with arXiv:1111.1383 and arXiv:1108.344

    Quantum Electronic Transport through a Precessing Spin

    Full text link
    The conductance through a local nuclear spin precessing in a magnetic field is studied by using the equations-of-motion approach. The characteristics of the conductance is determined by the tunneling matrix and the position of equilibrium chemical potential. We find that the spin flip coupling between the electrons on the spin site and the leads produces the conductance oscillation. When the spin is precessing in the magnetic field at Larmor frequency (ωL\omega_{L}), the conductance develops the oscillation with the frequency of both ωL\omega_{L} and 2ωL\omega_{L} components, the relative spectrum weight of which can be tuned by the chemical potential and the spin flip coupling.Comment: 5 pages, 3 figure

    The superheated Melting of Grain Boundary

    Full text link
    Based on a model of the melting of Grain Boundary (GB), we discuss the possibility of the existence of superheated GB state. A Molecular Dynamics simulation presented here shows that the superheated GB state can realized in the high symmetric tilt GB. Whether the sizes of liquid nuclei exceed a critical size determined the superheating grain boundary melting or not. Our results also indicate that the increase of melting point due to pressure is smaller than the superheating due to nucleation mechanism.Comment: Accepted by PRB, 7 pages and 5 figure

    Comparison of Power Dependence of Microwave Surface Resistance of Unpatterned and Patterned YBCO Thin Film

    Full text link
    The effect of the patterning process on the nonlinearity of the microwave surface resistance RSR_S of YBCO thin films is investigated. With the use of a sapphire dielectric resonator and a stripline resonator, the microwave RSR_S of YBCO thin films was measured before and after the patterning process, as a function of temperature and the rf peak magnetic field in the film. The microwave loss was also modeled, assuming a Jrf2J_{rf}^2 dependence of ZS(Jrf)Z_S(J_{rf}) on current density JrfJ_{rf}. Experimental and modeled results show that the patterning has no observable effect on the microwave residual RSR_S or on the power dependence of RSR_S.Comment: Submitted to IEEE Trans. MT

    Dynamical chiral symmetry breaking and a critical mass

    Get PDF
    On a bounded, measurable domain of non-negative current-quark mass, realistic models of QCD's gap equation can simultaneously admit two inequivalent dynamical chiral symmetry breaking (DCSB) solutions and a solution that is unambiguously connected with the realisation of chiral symmetry in the Wigner mode. The Wigner solution and one of the DCSB solutions are destabilised by a current-quark mass and both disappear when that mass exceeds a critical value. This critical value also bounds the domain on which the surviving DCSB solution possesses a chiral expansion. This value can therefore be viewed as an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities. For a pseudoscalar meson constituted of equal mass current-quarks, it corresponds to a mass m_{0^-}~0.45GeV. In our discussion we employ properties of the two DCSB solutions of the gap equation that enable a valid definition of in the presence of a nonzero current-mass. The behaviour of this condensate indicates that the essentially dynamical component of chiral symmetry breaking decreases with increasing current-quark mass.Comment: 9 pages, 7 figures. Minor wording change

    Statistical Analysis of a Semilinear Hyperbolic System Advected by a White in Time Random Velocity Field

    Full text link
    We study a system of semilinear hyperbolic equations passively advected by smooth white noise in time random velocity fields. Such a system arises in modeling non-premixed isothermal turbulent flames under single-step kinetics of fuel and oxidizer. We derive closed equations for one-point and multi-point probability distribution functions (PDFs) and closed form analytical formulas for the one point PDF function, as well as the two-point PDF function under homogeneity and isotropy. Exact solution formulas allows us to analyze the ensemble averaged fuel/oxidizer concentrations and the motion of their level curves. We recover the empirical formulas of combustion in the thin reaction zone limit and show that these approximate formulas can either underestimate or overestimate average concentrations when reaction zone is not tending to zero. We show that the averaged reaction rate slows down locally in space due to random advection induced diffusion; and that the level curves of ensemble averaged concentration undergo diffusion about mean locations.Comment: 18 page

    A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears

    Full text link
    Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds provides an efficient tool for statistical speed analysis, as well as a fast and accurate method for speed computation. A variational principle based analysis is carried out on the ensemble of KPP speeds through spatially stationary random shear flows inside infinite channel domains. In the regime of small root mean square (rms) shear amplitude, the enhancement of the ensemble averaged KPP front speeds is proved to obey the quadratic law under certain shear moment conditions. Similarly, in the large rms amplitude regime, the enhancement follows the linear law. In particular, both laws hold for the Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic ensemble averaged speed formula is derived in the small rms regime and is explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational principle based computation agrees with these analytical findings, and allows further study on the speed enhancement distributions as well as the dependence of enhancement on the shear covariance. Direct simulations in the small rms regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in section

    Constraints on Holographic Dark Energy from Latest Supernovae, Galaxy Clustering, and Cosmic Microwave Background Anisotropy Observations

    Get PDF
    The holographic dark energy model is proposed by Li as an attempt for probing the nature of dark energy within the framework of quantum gravity. The main characteristic of holographic dark energy is governed by a numerical parameter cc in the model. The parameter cc can only be determined by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the universe, it is of extraordinary importance to constrain the parameter cc by using the currently available observational data. In this paper, we derive constraints on the holographic dark energy model from the latest observational data including the gold sample of 182 Type Ia supernovae (SNIa), the shift parameter of the cosmic microwave background (CMB) given by the three-year {\it Wilkinson Microwave Anisotropy Probe} ({\it WMAP}) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). The joint analysis gives the fit results in 1-σ\sigma: c=0.91−0.18+0.26c=0.91^{+0.26}_{-0.18} and Ωm0=0.29±0.03\Omega_{\rm m0}=0.29\pm 0.03. That is to say, though the possibility of c<1c<1 is more favored, the possibility of c>1c>1 can not be excluded in one-sigma error range, which is somewhat different from the result derived from previous investigations using earlier data. So, according to the new data, the evidence for the quintom feature in the holographic dark energy model is not as strong as before.Comment: 22 pages, 8 figures; accepted for publication in Phys. Rev.

    Quantum refrigerator driven by current noise

    Full text link
    We proposed a scheme to implement a self-contained quantum refrigerator system composed of three rf-SQUID qubits, or rather, flux-biased phase qubits. The three qubits play the roles of the target, the refrigerator and the heat engine respectively. We provide different effective temperatures for the three qubits, by imposing external current noises of different strengths. The differences of effective temperatures give rise to the flow of free energy and that drives the refrigerator system to cool down the target. We also show that the efficiency of the system approaches the Carnot efficiency.Comment: 5 pages, 1 figur

    Black Holes and Large Order Quantum Geometry

    Get PDF
    We study five-dimensional black holes obtained by compactifying M theory on Calabi-Yau threefolds. Recent progress in solving topological string theory on compact, one-parameter models allows us to test numerically various conjectures about these black holes. We give convincing evidence that a microscopic description based on Gopakumar-Vafa invariants accounts correctly for their macroscopic entropy, and we check that highly nontrivial cancellations -which seem necessary to resolve the so-called entropy enigma in the OSV conjecture- do in fact occur. We also study analytically small 5d black holes obtained by wrapping M2 branes in the fiber of K3 fibrations. By using heterotic/type II duality we obtain exact formulae for the microscopic degeneracies in various geometries, and we compute their asymptotic expansion for large charges.Comment: 42 pages, 20 eps figures, small correction
    • …
    corecore