15,708 research outputs found

    Self-assembled island formation in heteroepitaxial growth

    Full text link
    We investigate island formation during heteroepitaxial growth using an atomistic model that incorporates deposition, activated diffusion and stress relaxation. For high misfit the system naturally evolves into a state characterized by a narrow island size distribution. The simulations indicate the existence of a strain assisted kinetic mechanism responsible for the self-assembling process, involving enhanced detachment of atoms from the edge of large islands and biased adatom diffusion.Comment: ReVTeX, 10 pages, 3 ps figure

    A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears

    Full text link
    Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds provides an efficient tool for statistical speed analysis, as well as a fast and accurate method for speed computation. A variational principle based analysis is carried out on the ensemble of KPP speeds through spatially stationary random shear flows inside infinite channel domains. In the regime of small root mean square (rms) shear amplitude, the enhancement of the ensemble averaged KPP front speeds is proved to obey the quadratic law under certain shear moment conditions. Similarly, in the large rms amplitude regime, the enhancement follows the linear law. In particular, both laws hold for the Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic ensemble averaged speed formula is derived in the small rms regime and is explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational principle based computation agrees with these analytical findings, and allows further study on the speed enhancement distributions as well as the dependence of enhancement on the shear covariance. Direct simulations in the small rms regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in section

    Decoherence and the retrieval of lost information

    Full text link
    We found that in contrast with the common premise, a measurement on the environment of an open quantum system can {\em reduce} its decoherence rate. We demonstrate it by studying an example of indirect qubit's measurement, where the information on its state is hidden in the environment. This information is extracted by a distant device, coupled with the environment. We also show that the reduction of decoherence generated by this device, is accompanied with diminution of the environmental noise in a vicinity of the qubit. An interpretation of these results in terms of quantum interference on large scales is presented.Comment: 9 pages, 8 figures, additional explanations added, Phys. Rev. B, in pres

    The superheated Melting of Grain Boundary

    Full text link
    Based on a model of the melting of Grain Boundary (GB), we discuss the possibility of the existence of superheated GB state. A Molecular Dynamics simulation presented here shows that the superheated GB state can realized in the high symmetric tilt GB. Whether the sizes of liquid nuclei exceed a critical size determined the superheating grain boundary melting or not. Our results also indicate that the increase of melting point due to pressure is smaller than the superheating due to nucleation mechanism.Comment: Accepted by PRB, 7 pages and 5 figure

    Distillable entanglement in ddd\otimes d dimension

    Full text link
    Distillable entanglement (EdE_d) is one of the acceptable measures of entanglement of mixed states. Based on discrimination through local operation and classical communication, this paper gives EdE_d for two classes of orthogonal multipartite maximally entangled states.Comment: 6 page

    Comparison of Power Dependence of Microwave Surface Resistance of Unpatterned and Patterned YBCO Thin Film

    Full text link
    The effect of the patterning process on the nonlinearity of the microwave surface resistance RSR_S of YBCO thin films is investigated. With the use of a sapphire dielectric resonator and a stripline resonator, the microwave RSR_S of YBCO thin films was measured before and after the patterning process, as a function of temperature and the rf peak magnetic field in the film. The microwave loss was also modeled, assuming a Jrf2J_{rf}^2 dependence of ZS(Jrf)Z_S(J_{rf}) on current density JrfJ_{rf}. Experimental and modeled results show that the patterning has no observable effect on the microwave residual RSR_S or on the power dependence of RSR_S.Comment: Submitted to IEEE Trans. MT

    Statistical Analysis of a Semilinear Hyperbolic System Advected by a White in Time Random Velocity Field

    Full text link
    We study a system of semilinear hyperbolic equations passively advected by smooth white noise in time random velocity fields. Such a system arises in modeling non-premixed isothermal turbulent flames under single-step kinetics of fuel and oxidizer. We derive closed equations for one-point and multi-point probability distribution functions (PDFs) and closed form analytical formulas for the one point PDF function, as well as the two-point PDF function under homogeneity and isotropy. Exact solution formulas allows us to analyze the ensemble averaged fuel/oxidizer concentrations and the motion of their level curves. We recover the empirical formulas of combustion in the thin reaction zone limit and show that these approximate formulas can either underestimate or overestimate average concentrations when reaction zone is not tending to zero. We show that the averaged reaction rate slows down locally in space due to random advection induced diffusion; and that the level curves of ensemble averaged concentration undergo diffusion about mean locations.Comment: 18 page

    Difference of optical conductivity between one- and two-dimensional doped nickelates

    Full text link
    We study the optical conductivity in doped nickelates, and find the dramatic difference of the spectrum in the gap (ω\omega\alt4 eV) between one- (1D) and two-dimensional (2D) nickelates. The difference is shown to be caused by the dependence of hopping integral on dimensionality. The theoretical results explain consistently the experimental data in 1D and 2D nickelates, Y2x_{2-x}Cax_xBaNiO5_5 and La2x_{2-x}Srx_xNiO4_4, respectively. The relation between the spectrum in the X-ray aborption experiments and the optical conductivity in La2x_{2-x}Srx_xNiO4_4 is discussed.Comment: RevTeX, 4 pages, 4 figure

    Quantum refrigerator driven by current noise

    Full text link
    We proposed a scheme to implement a self-contained quantum refrigerator system composed of three rf-SQUID qubits, or rather, flux-biased phase qubits. The three qubits play the roles of the target, the refrigerator and the heat engine respectively. We provide different effective temperatures for the three qubits, by imposing external current noises of different strengths. The differences of effective temperatures give rise to the flow of free energy and that drives the refrigerator system to cool down the target. We also show that the efficiency of the system approaches the Carnot efficiency.Comment: 5 pages, 1 figur

    Quantum master equation scheme of time-dependent density functional theory to time-dependent transport in nano-electronic devices

    Full text link
    In this work a practical scheme is developed for the first-principles study of time-dependent quantum transport. The basic idea is to combine the transport master-equation with the well-known time-dependent density functional theory. The key ingredients of this paper include: (i) the partitioning-free initial condition and the consideration of the time-dependent bias voltages which base our treatment on the Runge-Gross existence theorem; (ii) the non-Markovian master equation for the reduced (many-body) central system (i.e. the device); and (iii) the construction of Kohn-Sham master equation for the reduced single-particle density matrix, where a number of auxiliary functions are introduced and their equations of motion (EOM) are established based on the technique of spectral decomposition. As a result, starting with a well-defined initial state, the time-dependent transport current can be calculated simultaneously along the propagation of the Kohn-Sham master equation and the EOM of the auxiliary functions.Comment: 9 pages, no figure
    corecore