9,057 research outputs found

    Parton Energy Loss and the Generalized Jet Transport Coefficient

    Full text link
    We revisit radiative parton energy loss in deeply inelastic scattering (DIS) off a large nucleus within the perturbative QCD approach. We calculate the gluon radiation spectra induced by double parton scattering in DIS without collinear expansion in the transverse momentum of initial gluons as in the original high-twist approach. The final radiative gluon spectrum can be expressed in terms of the convolution of hard partonic parts and unintegrated or transverse momentum dependent (TMD) quark-gluon correlations. The TMD quark-gluon correlation can be factorized approximately as a product of initial quark distribution and TMD gluon distribution which can be used to define the generalized or TMD jet transport coefficient. Under the static scattering center and soft radiative gluon approximation, we recover the result by Gylassy-Levai-Vitev (GLV) in the first order of the opacity expansion. The difference as a result of the soft radiative gluon approximation is investigated numerically under the static scattering center approximation.Comment: 33 pages in RevTeX with 30 figures, final version appeared in PRD with additional typos correcte

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient

    Improved Model Predictive Current Control for SPMSM Drives With Parameter Mismatch

    Get PDF
    Model predictive current control (MPCC) can predict future motor behavior according to a motor model. In practice, however, motor parameters will vary at run time, and the parameter mismatch disturbances caused by the variation in motor parameters will deteriorate the MPCC performance. To suppress the parameter mismatch disturbances effectively, this paper proposes a modified MPCC with a current variation update mechanism. In contrast with the traditional current prediction equation that contains crude model parameters, the modified current prediction equation contains only measured information, taking advantage of the proposed current variation update mechanism, which can update the modified prediction equation within each sampling period. A simulation established by MATLAB software indicates that the proposed method can effectively suppress the parameter mismatch disturbances. Experiments are carried out to verify the correctness of the proposed method

    Gravitational Effects of Rotating Bodies

    Full text link
    We study two type effects of gravitational field on mechanical gyroscopes (i.e. rotating extended bodies). The first depends on special relativity and equivalence principle. The second is related to the coupling (i.e. a new force) between the spins of mechanical gyroscopes, which would violate the equivalent principle. In order to give a theoretical prediction to the second we suggest a spin-spin coupling model for two mechanical gyroscopes. An upper limit on the coupling strength is then determined by using the observed perihelion precession of the planet's orbits in solar system. We also give predictions violating the equivalence principle for free-fall gyroscopes .Comment: LaTex, 6 page
    corecore