17 research outputs found

    Optimal Investment with Multiple Risky Assets for an Insurer in an Incomplete Market

    Get PDF
    This paper studies the optimal investment problem for an insurer in an incomplete market. The insurer's risk process is modeled by a LĂ©vy process and the insurer is supposed to have the option of investing in multiple risky assets whose price processes are described by the standard Black-Scholes model. The insurer aims to maximize the expected utility of terminal wealth. After the market is completed, we obtain the optimal strategies for quadratic utility and constant absolute risk aversion (CARA) utility explicitly via the martingale approach. Finally, computational results are presented for given raw market data

    Precommitted Investment Strategy versus Time-Consistent Investment Strategy for a Dual Risk Model

    Get PDF
    We are concerned with optimal investment strategy for a dual risk model. We assume that the company can invest into a risk-free asset and a risky asset. Short-selling and borrowing money are allowed. Due to lack of iterated-expectation property, the Bellman Optimization Principle does not hold. Thus we investigate the precommitted strategy and time-consistent strategy, respectively. We take three steps to derive the precommitted investment strategy. Furthermore, the time-consistent investment strategy is also obtained by solving the extended Hamilton-Jacobi-Bellman equations. We compare the precommitted strategy with time-consistent strategy and find that these different strategies have different advantages: the former can make value function maximized at the original time t=0 and the latter strategy is time-consistent for the whole time horizon. Finally, numerical analysis is presented for our results

    Precommitted Investment Strategy versus Time-Consistent Investment Strategy for a General Risk Model with Diffusion

    Get PDF
    We mainly study a general risk model and investigate the precommitted strategy and the time-consistent strategy under mean-variance criterion, respectively. A lagrange method is proposed to derive the precommitted investment strategy. Meanwhile from the game theoretical perspective, we find the time-consistent investment strategy by solving the extended Hamilton-Jacobi-Bellman equations. By comparing the precommitted strategy with the time-consistent strategy, we find that the company under the time-consistent strategy has to give up the better current utility in order to keep a consistent satisfaction over the whole time horizon. Furthermore, we theoretically and numerically provide the effect of the parameters on these two optimal strategies and the corresponding value functions

    Optimal Control of Investment-Reinsurance Problem for an Insurer with Jump-Diffusion Risk Process: Independence of Brownian Motions

    Get PDF
    This paper investigates the excess-of-loss reinsurance and investment problem for a compound Poisson jump-diffusion risk process, with the risk asset price modeled by a constant elasticity of variance (CEV) model. It aims at obtaining the explicit optimal control strategy and the optimal value function. Applying stochastic control technique of jump diffusion, a Hamilton-Jacobi-Bellman (HJB) equation is established. Moreover, we show that a closed-form solution for the HJB equation can be found by maximizing the insurer’s exponential utility of terminal wealth with the independence of two Brownian motions W(t) and W1(t). A verification theorem is also proved to verify that the solution of HJB equation is indeed a solution of this optimal control problem. Then, we quantitatively analyze the effect of different parameter impacts on optimal control strategy and the optimal value function, which show that optimal control strategy is decreasing with the initial wealth x and decreasing with the volatility rate of risk asset price. However, the optimal value function V(t;x;s) is increasing with the appreciation rate μ of risk asset

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    Optimal Time-Consistent Investment Strategy for a DC Pension Plan with the Return of Premiums Clauses and Annuity Contracts

    No full text
    Defined contribution and annuity contract are merged into one pension plan to study both accumulation phase and distribution phase, which results in such effects that both phases before and after retirement being “defined”. Under the Heston’s stochastic volatility model, this paper focuses on mean-variance insurers with the return of premiums clauses to study the optimal time-consistent investment strategy for the DC pension merged with an annuity contract. Both accumulation phase before retirement and distribution phase after retirement are studied. In the time-consistent framework, the extended Hamilton-Jacobi-Bellman equations associated with the optimization problem are established. Applying stochastic optimal control technique, the time-consistent explicit solutions of the optimal strategies and the efficient frontiers are obtained. In addition, numerical analysis illustrates our results and also deepens our knowledge or understanding of the research results

    Worst-Case Investment and Reinsurance Optimization for an Insurer under Model Uncertainty

    No full text
    In this paper, we study optimal investment-reinsurance strategies for an insurer who faces model uncertainty. The insurer is allowed to acquire new business and invest into a financial market which consists of one risk-free asset and one risky asset whose price process is modeled by a Geometric Brownian motion. Minimizing the expected quadratic distance of the terminal wealth to a given benchmark under the “worst-case” scenario, we obtain the closed-form expressions of optimal strategies and the corresponding value function by solving the Hamilton-Jacobi-Bellman (HJB) equation. Numerical examples are presented to show the impact of model parameters on the optimal strategies

    Breast-lesion assessment using amide proton transfer-weighted imaging and dynamic contrast-enhanced MR imaging

    No full text
    Previous studies have indicated that amide proton transfer-weighted imaging (APTWI) could be utilized for differentiating benign and malignant tumors. The APTWI technology has increasingly being applied to breast tumor research in recent years. However, according to the latest literature retrieval, no relevant previous studies compared the value of APTWI and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in distinguishing benign lesions from malignant lesions. In the present study, the application of APTWI and DCE for differentiating the benign and malignant breast lesions was investigated
    corecore