2 research outputs found

    Thermoreversible Gelation of Poly(ether ether ketone)

    No full text
    Solutions of poly­(ether ether ketone) in dichloroacetic acid have been shown to form monolithic, thermoreversible gels at temperatures ranging from 10 to 140 °C. A phase diagram was constructed over broad concentration and temperature ranges, and the phase boundary suggests an upper critical solution temperature (UCST) behavior. Furthermore, poly­(ether ether ketone) (PEEK) gels were solvent-exchanged with water to form hydrogels and subsequently lyophilized to form PEEK aerogels. The PEEK aerogels of density 0.2 g/mL were found to be highly porous and composed of uniform 200 nm morphological features. The crystal structure of the PEEK hydrogels and aerogels was found to be identical to that of melt-crystallized PEEK. The mechanical properties of the PEEK aerogels (in compression) were found to be superior to conventional silicate aerogels of comparable density. This report is the first example of a monolithic, thermoreversible gel of PEEK and the first demonstration of PEEK hydrogels and aerogels

    Blocky Ionomers via Sulfonation of Poly(ether ether ketone) in the Semicrystalline Gel State

    No full text
    Blocky sulfonated poly­(ether ether ketone) (SPEEK) ionomers were synthesized by postpolymerization functionalization in the gel state. Matched sets of blocky and random SPEEK with ion contents between 3 and 11 mol % were prepared, and the thermal transitions and crystallization kinetics were examined using differential scanning calorimetry (DSC). At similar ion contents, the blocky SPEEK exhibited higher crystallizability and faster crystallization kinetics than random SPEEK. Reduced scattering contrast in the USAXS/SAXS/WAXD analysis of the blocky SPEEK copolymer membranes, relative to the random analogues, suggested that the ionic aggregates in blocky SPEEK were distributed in close proximity to the crystalline domains. Despite similar water uptake values for the low ion content random and blocky SPEEK membranes, the blocky SPEEK exhibited higher proton conductivities than their random analogues. At significantly higher ion contents (45 mol %), the blocky SPEEK membranes remained semicrystalline, showed controlled water uptake, and exhibited a 2.5 times higher conductivity over that of the amorphous, random analogues. Moreover, these new blocky, semicrystalline SPEEK membranes were found to exhibit a proton conductivity that was comparable to that of the benchmark 1100 EW Nafion
    corecore