25 research outputs found

    Concurrent Effects of Sediment Accretion and Nutrient Availability on the Clonal Growth Strategy of Carex brevicuspis-A Wetland Sedge That Produces Both Spreading and Clumping Ramets

    No full text
    Clonal plants producing both clumping and spreading ramets can adjust their growth forms in response to resource heterogeneity or environmental stress. They might produce clumping ramets to retain favorable patches, or produce spreading ramets to escape from stress-affected patches. This study aimed to investigate the rarely reported concurrent effects of sediment accretion and nutrient enrichment, which often occur simultaneously in lacustrine wetlands, on the vegetative propagation and clonal growth forms of Carex brevicuspis C.B. Clarke by conducting a factorial experiment of sediment burial and nutrient addition. Biomass accumulation, new ramet and rhizome numbers, and ramet length of C. brevicuspis were not affected at moderate burial, but were significantly lower after deep burial. Similarly, nutrient enrichment increased the growth and vegetative propagation of C. brevicuspis up to moderate sediment burial, but not after deep burial. Sediment accretion increased the proportion of spreading ramets produced by C. brevicuspis, whereas nutrient addition had no effect on the clonal growth forms. Our results indicated that the plasticity of clonal growth forms is an effective strategy used by plants to acclimate to moderate sediment accretion. Nutrient enrichment did not influence the clonal growth forms of C. brevicuspis and could not facilitate its acclimation to heavy sedimentation condition

    Effect of clone size on submergence tolerance and post-submergence growth recovery in Carex brevicuspis (Cyperaceae)

    No full text
    Clonal plants are prevalent in wetlands and play important roles in maintaining the functions of the ecosystem. In the present study, we determined the effect of clone sizes (R1, R2, and R3 comprising 1, 3, and 5clumping ramets) on the tolerance of Carex brevicuspis growing under 30-cm-deep water to three different periods (one, two, and three months) of submergence and its growth recovery one month after de-submergence. Our results showed that the relative growth rate (RGR) of C. brevicuspis significantly declined with increasing submergence time, and was higher in R3 and R5 than in R1 plants under both submergence and post-submergence conditions. The concentration of water-soluble carbohydrates (WSCs) was highest in R3, intermediate in R5, and the lowest in R1 plants during the first two months of submergence, indicating an optimal trade-off between energy investment and vegetative growth (i.e., buds and ramets production) in C. brevicuspis. WSCs were significantly reduced with increasing submergence time, while the starch content was significantly reduced only during the third month of submergence, implying that WSCs were a direct energy source for C. brevicuspis during submergence. The number of buds was higher in R5 than in R3 and R1 plants after two and three months of submergence, which directly resulted in a significantly higher post-submergence ramet production in R5 plants. These results indicated that plants with relatively larger clone sizes display better tolerance to submergence stress and post-submergence growth recovery. Therefore, we speculate that the large clone size in C brevicuspis might be an effective adaptive mechanism to survive under submergence stress in floodplain wetlands.</p

    Consequences of repeated defoliation on belowground bud banks of Carex brevicuspis (Cyperaceae) in the Dongting Lake wetlands, China

    Get PDF
    Despite the predominant role of bud banks in the regeneration of clonal macrophyte populations, few studies have examined the way in which clonal macrophytes adjust the demographic features of bud banks to regulate population dynamics in response to defoliation in wetlands. We investigated the density and composition of bud banks under repeated defoliation in the wetland sedge Carex brevicuspis C. B. Clarke in the Dongting Lake wetlands, China. The density and biomass of rhizome buds and shoots did not decrease significantly in response to repeated defoliation over two consecutive years. The composition of bud banks, which consisted of long and short rhizome buds, also did not change significantly in response to repeated defoliation. Nevertheless, the ramet height and the shoot, root, and rhizome mass of C. brevicuspis declined significantly under repeated defoliation. Our findings suggest that bud banks are a conservative reproductive strategy that enables C. brevicuspis to tolerate a certain amount of defoliation. The maintenance of large bud banks after repeated defoliation may enable C. brevicuspis populations to regenerate and persist in disturbed habitats. However, bud bank density of C. brevicuspis might decline in the long term because the amount of carbon stored in rhizome buds and plants is reduced by frequent defoliation

    Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China

    No full text
    Despite extensive studies on how environmental factors influence plant nutrient distribution and stoichiometry, it remains unclear how elevation affects soil distribution and stoichiometry. Here, patterns of the spatial distribution and stoichiometry of soil carbon (C), nitrogen (N) and phosphorus (P) were studied (with 123 soil samples) along a small-scale elevation gradient in the wetland of East Dongting Lake, China. Plant nutrient concentrations (C, N and P), soil stoichiometry (C:N, C:P and N:P ratios) and their relations with other soil properties were analysed. In addition, the spatial distributions of plant nutrient concentrations and stoichiometry were evaluated geostatistically with regression kriging, entailing estimation of regression parameters by generalized least squares and ordinary kriging of the residuals. Soil C, N and P concentrations and stoichiometry had moderate to strong spatial dependence, and the ratios of C:P and N:P had similar patterns of distribution to soil organic carbon (SOC) and total nitrogen (TN). The SOC, TN, C:N, C:P and N:P ratios increased with increasing elevation, whereas total phosphorus (TP) showed no marked change. Furthermore, SOC, TN, C:N, C:P and N:P decreased considerably with increasing duration of submergence, soil moisture and pH. Therefore, elevation appeared to influence the distribution of plant nutrients and stoichiometry as a result of changing soil moisture and duration of submergence. Highlights Study showed how elevation influences plant nutrient distribution and stoichiometry. Regression kriging was used to map soil properties. Plant nutrients and stoichiometry decreased with increasing duration of submergence. Elevation affected nutrient distribution because of soil moisture and water regime

    Competition between two wetland macrophytes under different levels of sediment saturation

    No full text
    Plant-plant interactions have been widely studied under various environmental conditions. However, in wetland ecosystems how plant interactions change in response to variation in sediment saturation remains largely unclear, even though different levels of sediment saturation play important roles in determining plant growth performance in wetland ecosystems. To this end, a competition experiment with two typical wetland species, Carex brevicuspis (neighbor plant) and Polygonum hydropiper (target plant), was conducted in a target-neighbor design. Two water levels (0 cm and -40 cm water levels representing waterlogged and drained sediments, respectively) and three neighbor plant densities (0 plants m-2, 400 plants m-2, and 1600 plants m-2) were tested in a factorial design. Biomass accumulation of P. hydropiper decreased along with enhanced C. brevicuspis density in the waterlogged treatment. However, in the drained treatment, biomass accumulation did not change under two C. brevicuspis densities. Above-ground relative neighbor effect index (ARNE) and relative neighbor effect index (RNE) of C. brevicuspis on P. hydropiper increased along with enhanced C. brevicuspis density only under waterlogged conditions. The below-ground relative neighbor effect index (BRNE) was not affected at the different water level and density treatments. The below-ground mass fraction of P. hydropiper was much higher in the waterlogged treatment than it was in the drained one, especially with no C. brevicuspis treatment. However, the leaf mass fraction displayed the opposite pattern. The longest root length of P. hydropiper was much shorter under waterlogged treatment than under the drained treatment. These results suggest that the competition intensity of C. brevicuspis to P. hydropiper increased along with increasing C. brevicuspis density only under waterlogged conditions. Moreover, this study also confirms that P. hydropiper can acclimate to water stress mainly through modulating its root architecture, for example reducing the root system length or increasing the root mass fraction.</p

    Assessment of regeneration potential in the clonal macrophyte Miscanthus sacchariflorus (Poaceae) after burial disturbance based on bud bank size and sprouting capacity.

    No full text
    The demography of the bud bank and its sprouting capacity are important for understanding the population dynamics of clonal plants and their potential responses to disturbances. To this end, we investigated the size and composition of the bud bank of Miscanthus sacchariflorus (Maxim.) Hack. immediately after flooding (November), in winter (January), in spring (March), and before flooding (May) in the wetlands of Dongting Lake. We then examined the sprouting capacity of axillary buds after sediment burial at 0, 5, 10, 15, and 20 cm. Total bud density of M. sacchariflorus ranged from 2524 buds m(-2) in November to 4293 buds m(-2) in March. Rhizome segments with inactive axillary buds, which represented the majority of the bud population (88.7% in November, 93.3% in May), did not sprout during the 140 days of the experiment (n = 250). The sprouting ratio was the highest for active axillary buds buried at 0 cm (64%) and decreased when buried at 10-20 cm (34%-40%). Due to the large number of active axillary buds in the bud bank (211-277 buds m(-2) from November to the following March), M. sacchariflorus could completely replace its aboveground shoot population, except in May (142 buds m(-2)). Increasing burial depth delayed bud emergence and reduced the growth period of shoots; however, burial depth did not affect the resulting plant height and only reduced the accumulated biomass at 20 cm. Therefore, the belowground bud bank and its strong sprouting capacity are important factors in the maintenance of local populations and colonization of new habitats for M. sacchariflorus after burial disturbances. The present methodology, which combined measurements of bud bank demography and sprouting capacity, may reflect the regeneration potential of clonal plants after burial disturbances
    corecore