45,455 research outputs found
Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes
To help reveal the complete picture of linear kinetic drift modes, four
independent numerical approaches, based on integral equation, Euler initial
value simulation, Euler matrix eigenvalue solution and Lagrangian particle
simulation, respectively, are used to solve the linear gyrokinetic
electrostatic drift modes equation in Z-pinch with slab simplification and in
tokamak with ballooning space coordinate. We identify that these approaches can
yield the same solution with the difference smaller than 1\%, and the
discrepancies mainly come from the numerical convergence, which is the first
detailed benchmark of four independent numerical approaches for gyrokinetic
linear drift modes. Using these approaches, we find that the entropy mode and
interchange mode are on the same branch in Z-pinch, and the entropy mode can
have both electron and ion branches. And, at strong gradient, more than one
eigenstate of the ion temperature gradient mode (ITG) can be unstable and the
most unstable one can be on non-ground eigenstates. The propagation of ITGs
from ion to electron diamagnetic direction at strong gradient is also observed,
which implies that the propagation direction is not a decisive criterion for
the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
Quantum tunneling through planar p-n junctions in HgTe quantum wells
We demonstrate that a p-n junction created electrically in HgTe quantum wells
with inverted band-structure exhibits interesting intraband and interband
tunneling processes. We find a perfect intraband transmission for electrons
injected perpendicularly to the interface of the p-n junction. The opacity and
transparency of electrons through the p-n junction can be tuned by changing the
incidence angle, the Fermi energy and the strength of the Rashba spin-orbit
interaction. The occurrence of a conductance plateau due to the formation of
topological edge states in a quasi-one-dimensional p-n junction can be switched
on and off by tuning the gate voltage. The spin orientation can be
substantially rotated when the samples exhibit a moderately strong Rashba
spin-orbit interaction.Comment: 4 pages, 4 figure
The making and breaking of camouflage
Not all camouflages are equally effective, as even a partially visible contour or a slight color difference can make the animal stand out and break its camouflage. In this paper, we address the question of what makes a camouflage successful, by proposing three scores for automatically assessing its effectiveness. In particular, we show that camouflage can be measured by the similarity between background and foreground features and boundary visibility. We use these camouflage scores to assess and compare all available camouflage datasets. We also incorporate the proposed camouflage score into a generative model as an auxiliary loss and show that effective camouflage images or videos can be synthesised in a scalable manner. The generated synthetic dataset is used to train a transformer-based model for segmenting camouflaged animals in videos. Experimentally, we demonstrate state-of-the-art camouflage breaking performance on the public MoCA-Mask benchmark
Low Temperature Precursor Route for Highly Efficient Spherically Shaped LED-Phosphors M2Si5N8:Eu2+ (M = Eu, Sr, Ba)
The highly efficient nitridosilicate phosphors M2Si5N8 (M = Sr, Ba, Eu) for phosphor-converted pc-LEDs were synthesized at low temperatures using a novel precursor route involving metal amides M(NH2)2. These precursors have been synthesized by dissolution of the respective metals in supercritical ammonia at 150°C and 300 bar. The thermal behavior and decomposition process of the amides were investigated with temperature programmed powder X-ray diffractometry and thermoanalytical measurements (DTA/TG). These investigations rendered the amides as suitable intermediates for reaction with silicon diimide (Si(NH)2). Thus, the desired nitridosilicate phosphors were obtained at relatively low temperatures around 1150−1400°C which is approximately 300°C lower compared to common synthetic approaches starting from metals or oxides. The influence of the thermal treatment on the phosphor morphology has been studied extensively. The accessibility of spherical phosphor particles represents another striking feature of this route since it improves light extraction from the crystallites due to decreasing light guiding and decreasing re-absorption inside the phosphor particle. The synthesized luminescent materials M2Si5N8:Eu2+ (M = Sr, Ba) exhibit quantum efficiencies and emission band widths (FWHM 70−90 nm) comparable to standard phosphor powders. Employment of Eu(NH2)2 as dopant reagent for synthesis of Ba2Si5N8:Eu2+ proved favorable for the formation of spherical crystallites compared to doping with Eu metal, halides, or oxide
- …