42,368 research outputs found
Quantum model for magnetic multivalued recording in coupled multilayers
In this paper, we discuss the possibilities of realizing the magnetic
multi-valued (MMV) recording in a magnetic coupled multilayer. The hysteresis
loop of a double-layer system is studied analytically, and the conditions for
achieving the MMV recording are given. The conditions are studied from
different respects, and the phase diagrams for the anisotropic parameters are
given in the end.Comment: 8 pages, LaTex formatted, 7 figures (those who are interested please
contact the authors requring the figures) Submitted to Physal Review B.
Email: [email protected]
Comparisons and Applications of Four Independent Numerical Approaches for Linear Gyrokinetic Drift Modes
To help reveal the complete picture of linear kinetic drift modes, four
independent numerical approaches, based on integral equation, Euler initial
value simulation, Euler matrix eigenvalue solution and Lagrangian particle
simulation, respectively, are used to solve the linear gyrokinetic
electrostatic drift modes equation in Z-pinch with slab simplification and in
tokamak with ballooning space coordinate. We identify that these approaches can
yield the same solution with the difference smaller than 1\%, and the
discrepancies mainly come from the numerical convergence, which is the first
detailed benchmark of four independent numerical approaches for gyrokinetic
linear drift modes. Using these approaches, we find that the entropy mode and
interchange mode are on the same branch in Z-pinch, and the entropy mode can
have both electron and ion branches. And, at strong gradient, more than one
eigenstate of the ion temperature gradient mode (ITG) can be unstable and the
most unstable one can be on non-ground eigenstates. The propagation of ITGs
from ion to electron diamagnetic direction at strong gradient is also observed,
which implies that the propagation direction is not a decisive criterion for
the experimental diagnosis of turbulent mode at the edge plasmas.Comment: 12 pages, 10 figures, accept by Physics of Plasma
Magnetic ordering and structural phase transitions in strained ultrathin SrRuO/SrTiO superlattice
Ruthenium-based perovskite systems are attractive because their Structural,
electronic and magnetic properties can be systematically engineered.
SrRuO/SrTiO superlattice, with its period consisting of one unit cell
each, is very sensitive to strain change. Our first-principles simulations
reveal that in the high tensile strain region, it transits from a ferromagnetic
(FM) metal to an antiferromagnetic (AFM) insulator with clear tilted octahedra,
while in the low strain region, it is a ferromagnetic metal without octahedra
tilting. Detailed analyses of three spin-down Ru-t orbitals just below
the Fermi level reveal that the splitting of these orbitals underlies these
dramatic phase transitions, with the rotational force constant of RuO
octahedron high up to 16 meV/Deg, 4 times larger than that of TiO.
Differently from nearly all the previous studies, these transitions can be
probed optically through the diagonal and off-diagonal dielectric tensor
elements. For one percent change in strain, our experimental spin moment change
is -0.140.06 , quantitatively consistent with our theoretical value
of -0.1 .Comment: 3 figures, 1 supplementary material, accepted by Phys. Rev. Let
A theory for magnetic-field effects of nonmagnetic organic semiconducting materials
A universal mechanism for strong magnetic-field effects of nonmagnetic
organic semiconductors is presented. A weak magnetic field (less than hundreds
mT) can substantially change the charge carrier hopping coefficient between two
neighboring organic molecules when the magnetic length is not too much longer
than the molecule-molecule separation and localization length of electronic
states involved. Under the illumination of lights or under a high electric
field, the change of hopping coefficients leads also to the change of polaron
density so that photocurrent, photoluminescence, electroluminescence,
magnetoresistance and electrical-injection current become sensitive to a weak
magnetic field. The present theory can not only explain all observed features,
but also provide a solid theoretical basis for the widely used empirical
fitting formulas.Comment: 4 pages, 2 figure
- …