536 research outputs found

    Unified Chinese License Plate Detection and Recognition with High Efficiency

    Full text link
    Recently, deep learning-based methods have reached an excellent performance on License Plate (LP) detection and recognition tasks. However, it is still challenging to build a robust model for Chinese LPs since there are not enough large and representative datasets. In this work, we propose a new dataset named Chinese Road Plate Dataset (CRPD) that contains multi-objective Chinese LP images as a supplement to the existing public benchmarks. The images are mainly captured with electronic monitoring systems with detailed annotations. To our knowledge, CRPD is the largest public multi-objective Chinese LP dataset with annotations of vertices. With CRPD, a unified detection and recognition network with high efficiency is presented as the baseline. The network is end-to-end trainable with totally real-time inference efficiency (30 fps with 640p). The experiments on several public benchmarks demonstrate that our method has reached competitive performance. The code and dataset will be publicly available at https://github.com/yxgong0/CRPD

    LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and Semantic-Aware Alignment

    Full text link
    3D panoptic segmentation is a challenging perception task that requires both semantic segmentation and instance segmentation. In this task, we notice that images could provide rich texture, color, and discriminative information, which can complement LiDAR data for evident performance improvement, but their fusion remains a challenging problem. To this end, we propose LCPS, the first LiDAR-Camera Panoptic Segmentation network. In our approach, we conduct LiDAR-Camera fusion in three stages: 1) an Asynchronous Compensation Pixel Alignment (ACPA) module that calibrates the coordinate misalignment caused by asynchronous problems between sensors; 2) a Semantic-Aware Region Alignment (SARA) module that extends the one-to-one point-pixel mapping to one-to-many semantic relations; 3) a Point-to-Voxel feature Propagation (PVP) module that integrates both geometric and semantic fusion information for the entire point cloud. Our fusion strategy improves about 6.9% PQ performance over the LiDAR-only baseline on NuScenes dataset. Extensive quantitative and qualitative experiments further demonstrate the effectiveness of our novel framework. The code will be released at https://github.com/zhangzw12319/lcps.git.Comment: Accepted as ICCV 2023 pape

    Experimental Study on Wind Erosion of Concrete Building Surface in Wind-Sand Environment

    Get PDF
    In this paper, the effects of different wind-sand attack angle, wind speed, action time, concrete strength, sand particle size, and sand content on the surface wind erosion of concrete structures are experimentally studied. Wind erosion rate and strength loss rate are defined as the indexes to measure the degree of wind erosion of concrete. According to the similarity theory, the actual situation is deduced based on the wind erosion test, and the wind erosion time corresponding to the wind speed, the action time of wind sand, and the simulation test in the case of sand content is obtained. it makes the experimental study of wind erosion on concrete buildings to have more practical significance
    corecore