

Citation for published version: Li, L, Wang, X, Xie, M, Wang, Z, Li, X & Ren, Y 2019, 'In situ extracting organic-bound calcium: A novel approach to mitigating organic fouling in forward osmosis treating wastewater via gradient diffusion thin-films', *Water Research*, vol. 156, pp. 102-109. https://doi.org/10.1016/j.watres.2019.03.018

DOI: 10.1016/j.watres.2019.03.018

Publication date: 2019

Document Version Peer reviewed version

Link to publication

Publisher Rights CC BY-NC-ND

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	In situ extracting organic-bound calcium: a novel approach to mitigating organic fouling in
2	forward osmosis treating wastewater via gradient diffusion thin-films
3	Ling Li ^a , Xinhua Wang ^{a,*} , Ming Xie ^b , Zhiwei Wang ^c , Xiufen Li ^{a,*} , Yueping Ren ^a
4	^a Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil
5	Engineering, Jiangnan University, Wuxi, P.R. China
6	^b Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University,
7	Melbourne, Australia
8	° State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science
9	and Engineering, Tongji University, Shanghai, P.R. China
10	
11	*Corresponding author. E-mail: <u>xhwang@jiangnan.edu.cn</u> (X. Wang), <u>xfli@jiangnan.edu.cn</u> (X.
12	Li); Tel: +86-510-85326516.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

23 Abstract

24	Forward osmosis (FO) has gained increasing interests in wastewater treatment and reclamation.
25	However, membrane fouling has become one major obstacle hindering FO application. A novel
26	mitigation approach for FO membrane fouling via <i>in situ</i> extracting Ca ²⁺ binding with the organic
27	foulants using the gradient diffusion thin-films (DGT) was proposed in this study. The DGT could
28	effectively adsorb the Ca ²⁺ binding with the sodium alginate via the chelation of the Chelex
29	functional groups, and its adsorption amount of Ca ²⁺ correspondingly increased as a function of the
30	Ca^{2+} concentration in the feed solution. Owing to the extraction of Ca^{2+} from the fouling layer by
31	the DGT, the FO membrane fouling was effectively mitigated evident by significant enhancement
32	of water flux, and at the same time, foulants became easily removed by physical cleaning. The
33	alleviation of FO membrane fouling by the DGT could be attributed to the fact that the structure of
34	the fouling layer became more porous and looser after <i>in situ</i> removing Ca^{2+} from the alginate- Ca^{2+}
35	gel networks. The feasibility of fouling control strategy via <i>in situ</i> removing Ca ²⁺ binding with the
36	foulants in the fouling layer was demonstrated, which provides new insights into fouling control
37	mechanisms during FO treating wastewater.
38	Keywords: forward osmosis, membrane fouling, organic foulants, calcium, gradient diffusion thin-
39	films, wastewater treatment

45 **1. Introduction**

46	Forward osmosis (FO) process has raised increasing attentions as a promising technology for
47	wastewater treatment and reclamation (Liu and Mi, 2012; Zhao et al., 2012; Lutchmiah et al., 2014).
48	FO process utilizes osmotic pressure gradient as driving force to extract water molecule from the
49	feed solution (FS) through the FO membrane to the draw solution (DS). Compared to the pressure-
50	driven membrane processes including reverse osmosis (RO) and nanofiltration (NF), the osmotic
51	pressure-driven FO process has several advantages such as lower energy consumption (if no need
52	to regenerate the draw solution), higher water recovery, and superior water flux stability against
53	fouling (McGinnis and Elimelech, 2007; Mi and Elimelech, 2010; Gu et al., 2013; McGovern and
54	Lienhard, 2014; Shaffer et al., 2015; Tow and Lienhard, 2016; Siddiqui et al., 2018). Nevertheless,
55	similar to other membrane processes, membrane fouling remains a major obstacle hindering a wider
56	application of FO to complex waste streams, and its combined bioreactor (e.g., osmotic membrane
57	bioreactor (OMBR) and anaerobic membrane bioreactor (AnOMBR)) in wastewater treatment and
58	reclamation (Mi and Elimelech, 2010; She et al., 2016; Wang et al., 2016a, 2017, 2018a, 2019; Luo
59	et al., 2017).
60	Fouling occurs when solutes or particles in the feed deposit onto surfaces or into pores of the

FO membrane (Liu and Mi, 2012), which not only enhances the resistance of FO membrane but also increases the external concentration polarization (ECP) (Wang et al., 2014; Motsa et al., 2015).
FO membrane fouling can be classified as organic, inorganic, microbial (biofouling) and colloidal fouling (Liu and Mi, 2012; Wang et al., 2014; Sun et al., 2016). Abundant and ubiquitous organic substances in the feed water such as, natural organic matters, alginates, and proteins, induce severe fouling on FO membrane surface (Mi and Elimelech, 2008, 2010; Xie et al., 2013). In addition,

67	inorganic species not only tend to directly precipitate onto the FO membrane surface but also
68	interact with the organic foulants by bridging negatively charged functional groups (Sobeck and
69	Higgins, 2002; Boo et al., 2012). Moreover, microorganisms especially bacteria can adhere to the
70	FO membrane and subsequently form a biofilm (Yoon et al., 2013; Kwan et al., 2015), and colloidal
71	fouling is owing to the deposition of colloidal particles (Liu and Mi, 2012). Correspondingly, FO
72	membrane fouling has been extensively investigated using single model foulant such as alginate,
73	bovine serum albumin (BSA), gypsum and Pseudomonas aeruginosa (Mi and Elimelech, 2008;
74	Arkhangelsky et al., 2012; Kwan et al., 2015). Compared with other fouling types, organic fouling
75	is more complicated, not only because specific interactions between chemical functional groups on
76	the FO membrane surface and those of the organic foulants may occur, but it was also found to be
77	affected by the ionic composition of the feed solution (Li and Elimelech, 2006). As a result, previous
78	studies on FO membrane fouling are focused on organic fouling (Li and Elimelech, 2006; Mi and
79	Elimelech, 2010; Liu and Mi, 2012; Motsa et al., 2015; Zheng et al., 2018). In these studies, it has
80	been demonstrated that organic fouling of FO membrane is enhanced by divalent cations, i.e.,
81	forming a dense, cross-linked organic fouling layer, and consequently resulting in a rapid flux
82	decline (Li and Elimelech, 2006). It is hypothesized that if the divalent cations can be extracted
83	from the foulants on the FO membrane surface, the organic fouling layer might become loose and
84	subsequently easily remove by a simply physical cleaning.
85	Diffusive gradients in thin-films (DGT) has become an attractive technology with a wide range
86	of applications, including water quality monitoring, dynamic processes and bioavailability in waters
87	and soils (Perez et al., 2009; Town et al., 2009; Schintu et al., 2010). The DGT technology can be
88	used to adsorb most metals (e.g., Al, Zn, Cu) in water and soil based on Fick's first law of diffusion

89	(Zhang and Davison, 1995; Degryse et al., 2009; Guan et al., 2015). It consists of the innermost
90	resin layer, a specific thickness of the diffusion gel, and a membrane filter (Zhang et al., 1998; Guan
91	et al., 2015). The diffusive gel provides a controlled medium through which ions migrate before
92	being adsorbed on the resin, and the resin layer is used to absorb the enriched target ions (Sherwood
93	et al., 2009). The adsorbent material in the resin layer has a strong binding ability to metal (metalloid)
94	ions, and its target in the solution is adsorbed immediately after passing through the diffusion gel to
95	the resin layer (Davison and Zhang, 2012). The DGT technology has the advantages of simplicity,
96	in situ and quantitative concentration of metals and non-metallic elements, as well as morphological
97	analysis by simulating the absorption process of organisms (Zhang and Davison, 2015).
98	We are inspired by the successful extraction of metal ions from soils/sediments using DGT,
99	where the metal ions in soils/sediments are effectively transferred to the DGT and subsequently to
100	the liquid phase. In this study, applying the DGT technology for in situ adsorbing the divalent
101	cations binding with the organic foulants from the FO membrane surface was attempted, thereby
102	for mitigating membrane fouling and facilitating the subsequent membrane cleaning. Studies on
103	applying the DGT technology for controlling organic fouling of FO membrane were rare in current
104	literature. The objective of this study is to evaluate the feasibility of alleviating the FO membrane
105	fouling through in situ removing the Ca^{2+} combined with the organic foulants by the DGT
106	technology.
107	2. Materials and methods

108 2.1 Experimental set-up

Fouling profile of the FO membrane was evaluated in a bench-scale filtration system, asschematically shown in Fig. S1, Supporting Information. This test system included a cross-flow

111	membrane cell with two symmetric flow channels (each of 85 mm \times 39 mm \times 2 mm in dimension).
112	Membrane coupons were placed in the membrane cell between the two channels for the DS and FS,
113	respectively. Two peristaltic pumps (Longer Precision Pump, China) were used to pump the DS and
114	FS into the separate closed loops. The cross-flow velocity in both channels of the membrane cell
115	was constant at 1.3 mm/s. Both DS and FS were kept at room temperature (25 ± 2 °C). Change in
116	the weight of FS was monitored by a digital balance (Mettler Toledo, China) and recorded in a
117	computer by a data acquisition software (Mettler Toledo, China), which was converted into changes
118	in water flux of FO membrane.
119	2.2 Operating conditions
120	Thin film composite (TFC) polyamide FO membrane (supplied by Hydration Technology
121	Innovations) was used in this study. The TFC membrane has an asymmetric structure including a
122	dense active layer (AL) and a porous support layer (SL) embedded with a polyester mesh. The water
123	permeability coefficients (A) and salt permeability coefficients (B) of the TFC FO membrane were
124	4.9×10^{12} m/(s Pa) and 0.95×10^{-7} m/s, respectively. Membrane samples were stored in deionized
125	(DI) water at 4 °C and soaked in DI water at room temperature for 24 h before each test.
126	A 4 M NaCl solution was used as the DS in both fouling and baseline experiments. Sodium
127	alginate (75-100 kDa) was selected as the model organic foulant. The baseline experiment was
128	conducted before the fouling experiment with the DI water as the FS and the 4 M NaCl as the DS.
129	In order to evaluate the adsorption efficiency of DGT for Ca ²⁺ binding with the sodium alginate, the
130	FO membrane was fouled by the sodium alginate and CaCl ₂ in sequence, which was different from
131	the previous fouling protocol (Liu and Mi, 2012; Motsa et al., 2015). The procedure of the FO
132	membrane fouling tests was conducted as follows (see for Fig. S2, Supporting Information). Firstly,

133	a new FO membrane coupon was sealed in the FO cell with active layer facing FS, and then a
134	baseline experiment was performed for 4 h to obtain the initial flux of the FO membrane. After that,
135	the fouling tests were started with 2 L of FS and DS. With regard to the single organic fouling, the
136	fouling filtration was operated for 48 h; while the enhanced organic fouling filtration was conducted
137	with a CaCl ₂ solution for 24 h after the single organic fouling experiments operated for 24 h. As for
138	the single organic fouling, the FS consisted of 200 mg/L sodium alginate, 20 mM NaCl, 20 mM
139	Na_2SO_4 and 1 mM NaHCO ₃ , while the FS was changed into the CaCl ₂ solution with three
140	concentration levels of 1, 15 and 35 mM, respectively, for the tests of enhanced organic fouling by
141	the Ca ²⁺ . All the chemicals were obtained from Sigma-Aldrich (Shanghai, China).
142	2.3 DGT adsorption and evaluation
143	The DGT adsorption experiments were conducted after the fouling tests. As schematically
144	shown in Fig. 1, the DGT device included the membrane filter, the diffusive gel strip and the resin
145	layer (DGT Research Ltd., UK). During the adsorption experiments, the fouled FO membranes were
146	attached to the membrane filter for 48 h. After that, the resin layer made of Chelex-100 strip (a
147	commonly used chelating resin) was removed into the 1 M HNO3 eluent for 24 h. Meanwhile, the
148	remaining foulants were removed from the FO membrane surface by ultrasound (35 Hz, 15 min)
149	(Pendashteh et al., 2011). The extracted and ultrasound-extractable remaining Ca ²⁺ concentrations
150	were measured by an Atomic Absorption Spectrometer (Shimadzu Tokyo, Japan).
151	Fig. 1
152	In order to evaluate the adsorption efficiency of the DGT, the extracted Ca ²⁺ concentration was
153	converted into the adsorption amount on the Chelex gel strip according to the below equation.

155 where *M* is the amount of Ca^{2+} absorbed on the Chelex gel strip, C_e is the concentration of Ca^{2+} in

156 the eluent, V_e is the volume of the eluent (50 mL in this study), and f_e is the elution efficiency (0.8

157 for Ca^{2+} (Zhang and Davison, 1995; Warnken et al., 2006; Montero et al., 2012).

158 The ultrasound-extractable remaining Ca²⁺ amount on the fouled FO membrane was 159 correspondingly converted by the following equation.

$$160 M_R = C_R V_R (2)$$

161 where M_R is the amount of Ca²⁺ remained on the fouled membrane surface, C_R is the 162 concentration of the ultrasound-extractable remaining Ca²⁺, and V_R is the volume of the dissolved 163 residual foulants (100 mL in this study).

164 Based on the calculation of M and M_R , the adsorption efficiency (η) was obtained according to 165 the below equation.

166
$$\eta$$
 (%)=M/(M+M_R)×100% (3)

167 2.4 Analytical method

Water flux through the FO membrane was obtained based on the weight change of the FS. After the fouling tests and the DGT adsorption experiments, the water flux of the fouled and adsorbed FO membranes were determined by the FO cell for 4 h with the DI water as the FS and the 4 M NaCl as the DS. In order to eliminate the impacts of initial water flux (also measured by the FO cell) for different FO membranes, a normalized water flux was used for characterizing the fouled and adsorbed FO membranes. It was obtained through the determining flux dividing by the initial flux before fouling tests.

175 The conductivity of the FS was monitored and recorded by a conductivity meter (EC300A,

176 YSI, USA). The FO membrane samples were obtained by randomly cutting from the fouled FO

177	membranes removed from the FO cell. An energy diffusive X-ray (EDX) analyzer (Su-8020, Hitachi,
178	Japan) and a field-emission scanning electron microscopy (FE-SEM) (Su-8020, Hitachi, Japan)
179	were applied for capturing the element compositions and surface images of the fouled and adsorbed
180	FO membrane samples, respectively. Prior to SEM and EDX observations, all FO membrane
181	samples were prepared by freezing the membrane at -80 °C in a chiller for 2 h followed by freeze
182	drying at -48 °C for 6 h using a freeze dryer (FreeZone 25, Labconco, Czech Republic). The
183	distributions of polysaccharides on the fouled and adsorbed FO membrane samples were analyzed
184	by the confocal laser scanning microscopy (CLSM) (LSM 710, ZEISS, Germany). The probe of
185	Calcofluor white (CW) (0.3 g/L) was used to stain the polysaccharides on the FO membrane samples.
186	After the labeling process, the samples were incubated for 30 min at room temperature in the dark,
187	and then were washed twice with phosphate buffered saline (PBS) solution to remove the extra
188	probes. The stained FO membrane samples were characterized by the CLSM at the
189	excitation/emission wavelengths of 405 nm/410-480 nm. Three-dimensional reconstructions were
190	obtained with ZEISS confocal software (ZEN 2012), and the images were analyzed by softwares of
191	PHLIP (Version 0.7) and Image J (NIH, Bethesda, MD, USA) to calculate the quantitative
192	parameters including average amount of polysaccharide, mean thickness and porosity (Mueller et
193	al., 2006; Yu et al., 2011; Yuan et al., 2015; Wang, et al., 2016b).

- All experiments are repeated at least three times for statistics. The data shown in tables andfigures is expressed as means with standard deviations.
- 196 **3. Results and discussion**
- 197 *3.1 Water flux profile*
- 198 Water flux profiles of FO membranes at different fouling conditions are shown in Fig. 2. Water

199	flux of FO membrane decreased with the extension of the operating time regardless of the
200	composition of the FS. However, the profile for FO membrane water flux decline was highly
201	dependent on the foulants composition in the FS. Compared with the single organic fouling only
202	induced by the sodium alginate, the flux decline became severer when the Ca^{2+} was added into the
203	FS. In addition, the rate for water flux decline was accelerated with an increase of the Ca ²⁺
204	concentration. Moreover, the cleaning experiments on the fouled FO membranes at different fouling
205	conditions were conducted by the backwashing in the FO cell for 0.5 h with the 0.5 M NaCl as the
206	FS and the DI water as the DS according to previous literatures (Mi and Elimelech, 2010; Motsa et
207	al., 2017). The results indicated that the alginate fouling became difficult to clean when Ca^{2+} was
208	present in the influent, e.g., the increasing rate of the normalized water flux was about 20% for the
209	single organic fouling only induced by the sodium alginate while it became less than 5% for the
210	organic fouling induced by the sodium alginate and 35 mM Ca ²⁺ . These facts clearly showed that
211	Ca ²⁺ aggravated the organic fouling of FO membrane, which was consistent with previous literature
212	(Liu and Mi, 2012; Motsa et al., 2015; Charfi, et al., 2017). This phenomenon could be attributed to
213	the fact that Ca ²⁺ and alginate form complexes with unique structure, thereby leading to a high
214	density gel network (Van den Brink et al., 2009; Wang and Waite, 2009).

Fig. 2

216 3.2 DGT approach effectively extracted calcium from fouling layer

After the fouling tests of the FO membranes, Ca²⁺ was extracted from the fouled FO membranes by the DGT technology. The normalized membrane flux of the fouled FO membranes before and after DGT adsorptions are summarized in Fig. 3 (a). Specifically, there were no changes in the normalized water flux of the fouled FO membrane with only alginate sodium before and after

221	the DGT adsorption, indicating that the DGT had no impacts on the single organic fouling of FO
222	membrane. By contrast, the normalized water flux had a significant increase after the DGT
223	adsorption for the organic fouling enhanced by Ca ²⁺ , suggesting an effective mitigation of FO
224	membrane fouling. Variations of the normalized water flux for different fouling conditions were
225	consistent with the DGT adsorption efficiency (see for Fig. 3 (b)): indeed, there was no Ca^{2+}
226	adsorption for the single organic fouling while the DGT adsorption efficiency was ranged from 32.6%
227	to 62.8% for the enhanced organic fouling with different concentrations of Ca^{2+} . These results
228	implied that the DGT could effectively adsorb Ca ²⁺ from the alginate bound foulants. As a result,
229	organic fouling of the FO membrane could be alleviated via the extraction of Ca^{2+} from the fouling
230	layer.

Fig. 3

Although the DGT could adsorb the Ca²⁺ from the fouling layer of the FO membrane, the 232 adsorption amount and efficiency were significantly influenced by adding concentration of Ca²⁺. 233 DGT adsorption amount of Ca²⁺ correspondingly increased with the feed Ca²⁺ concentration (Fig. 234 3 (b)), which was driven by more Ca^{2+} binding with the alginate at a higher addition of Ca^{2+} . 235 However, the adsorption efficiency was enhanced from 1 to 15 mM Ca²⁺, and started to decrease 236 when Ca²⁺ concentration reached 35 mM. Given that the DGT was constrained by adsorption 237 238 capacity, the decrease of adsorption efficiency at Ca²⁺ concentration of 35 mM could be attributed to the saturation of DGT adsorption (0.59 \pm 0.01 mg). Indeed, it was interesting that the DGT 239 240 adsorption efficiency was not correlated with the increase of the normalized water flux after the 241 DGT adsorption (Fig. 3 (a)), suggesting that the different structure and composition of the fouling layer on the FO membrane surface at different fouling conditions might strongly affect the 242

243 mitigation of membrane fouling by the DGT adsorption. Thus, it is very necessary to further 244 investigate the changes in structure and composition of the fouling layer before and after the DGT 245 adsorption.

246 3.3 DGT adsorption altered fouling layer structure and improved cleaning efficiency

247 In order to evaluate the structure of fouling layer before and after DGT adsorption, the morphology, element composition and structure of fouled and DGT adsorbed FO membranes were 248 249 analyzed by SEM, EDX and CLSM, respectively. The SEM images of the fouled FO membranes 250 before and after the DGT adsorption are shown in Fig. 4. Compared with the SEM image of the 251 virgin FO membrane (Fig. S3), a fouling layer was formed on the FO membrane surface when only 252 sodium alginate was used. However, except for the fouling layer, some macromolecular 253 biopolymers were appeared on the FO membrane surface in all scenarios with Ca²⁺ addition into the 254 feed. More importantly, more macromolecular biopolymers deposited on the membrane surface with the increase of Ca²⁺ concentration. This result further demonstrated that Ca²⁺ enhanced the 255 256 organic fouling and induced a severer FO membrane fouling. Noting that the high density "eggbox-shaped" gel networks were observed on the FO membrane surface when Ca²⁺ concentration 257 258 increased to 35 mM. Correlation of foulant deposition amount on the FO membrane surface and the Ca²⁺ concentration observed from SEM images were consistent with the variations of the flux 259 260 decline (Fig. 2). After the DGT adsorption, except for the single organic fouling induced by the 261 sodium alginate (Fig. 4 (Aa) and Fig. 4 (Ba)), the deposition of alginate fouling layer on the FO membrane surface minimized regardless of the Ca2+ concentration, indicating the effective 262 263 adsorption of Ca²⁺ from the fouling layer of the FO membrane by the DGT technology.

264

Fig. 4

265	From the EDX analyses, various elements including C, O, Na, S, Cl and Ca could be detected
266	on the fouled FO membranes (Fig. S4 and Table S1). It was notable that the relative weight
267	percentage of Ca on the fouled FO membranes correspondingly increased with the increase of the
268	adding Ca ²⁺ concentration, further indicating the occurrence of more severe "egg-box-shaped" gel
269	networks on the FO membrane surfaces. After the DGT adsorptions, the relative weight percentage
270	of Ca significantly reduced (Fig. S5 and Table S2). This result strongly proved the effective
271	adsorption of Ca ²⁺ from the fouling layer of the FO membrane by the DGT technology.
272	For further understanding the impacts of the DGT adsorption on the fouling structure of the FO
273	membrane, the fouled FO membranes before and after the DGT adsorption were analyzed by the
274	CLSM observations. From Fig. S6, all the fouled FO membrane surfaces were covered by
275	polysaccharides, and these formed fouling layers were thick. The deposited polysaccharides slightly
276	decreased for the fouling by both sodium alginate and Ca ²⁺ after the DGT adsorption (Fig. S6 and
277	Table 1). In addition, the porosity of the fouling layers induced by both the sodium alginate and
278	Ca ²⁺ significantly increased after the DGT adsorption (see for Table1). It has been demonstrated
279	that the porosity significantly affects membrane fouling, i.e., less porosity results in a severe
280	membrane fouling (Wu et al., 2009; Wang et al., 2018b). Thus, the mitigation of the fouling owing
281	to both the alginate and Ca^{2+} by the DGT technology was mainly attributed to the fact that the
282	structure of the fouling layer became more porous after the extraction of the organic-bound Ca^{2+} .
283	In order to further investigate whether DGT adsorption could enhance the physical cleaning,
284	the fouled and DGT adsorbed FO membranes at the FS condition of sodium alginate and 35 mM
285	Ca ²⁺ were backwashed according to previous literature (Mi and Elimelech, 2010; Motsa et al., 2017).
286	There was no significant variation of the normalized water flux for the fouled FO membrane after

287	the backwashing; by contrast, it significantly increased from 0.41 to 0.53 for the DGT adsorbed FO
288	membrane after backwashing (Fig. 5). It suggested that the DGT adsorption could enhance the
289	physical cleaning of the fouled FO membranes. Such evidence strongly suggested that the DGT
290	adsorption not only mitigated the FO membrane fouling but also enhanced the membrane cleaning
291	via changing the structure of the fouling layer.

Fig. 5

293 3.4 Implications

294 We demonstrated that the DGT technology can effectively alleviate organic fouling of FO 295 membranes via directly adsorbing Ca²⁺ from the fouling layer. The mechanisms on the *in situ* 296 mitigating FO membrane fouling are conceptualized in Fig. 6. With regard to a thick fouling layer with alginate-Ca²⁺ gel networks, the Chelex resin in the DGT device can directly remove the 297 alginate-bound Ca²⁺ via the chelation of the Chelex functional groups. Due to the extraction of the 298 alginate-bound Ca²⁺ from the organic fouling layer, the structure of the fouling layer became more 299 300 porous and looser, which mitigated the FO membrane fouling and further enhanced the cleaning 301 efficiency. Moreover, the DGT devise can be reused for adsorbing Ca²⁺ after the resin layer was regenerated by HNO₃ based on the results that the reused DGT device had a similar Ca²⁺ adsorption 302 303 amount compared with the new one. The success in alleviating organic fouling of the FO membrane 304 demonstrated the feasibility of fouling control strategy via directly extracting Ca²⁺ from the fouling 305 layer. Extracting the calcium from fouling layer played a critical role in altering membrane fouling 306 layer structure, which shed light on novel fouling control and management. However, applying such 307 DGT-based technique in controlling real FO membrane fouling still has limitations. On one hand, 308 the real FO fouling is composed of many other constituents such as precipitates, microorganisms,

and humic substances, which might disrupt the extraction of Ca²⁺ from the fouling layer. On the 309 310 other hand, although the DGT technology was suitable for the flat-sheet FO membrane module 311 applied in this study, it is difficult to directly apply in the spiral-wound or other tightly-packed 312 membrane configurations. Thus, further studies should be focused on evaluating the DGT 313 technology in real fouling scenarios where the co-existence of sparingly soluble inorganic minerals 314 and organic foulants leads to a more complicated membrane fouling, and emphasized on developing 315 other chelating agent or resin to replace with the DGT technology for in situ adsorbing calcium from 316 the fouling layer in order to adapt to different foulants composition and membrane configurations.

317

Fig. 6

318 4. Conclusions

319 This study proposes a novel approach to mitigating the FO membrane fouling via the DGT for in situ removing Ca²⁺ binding with organic foulants. With regard to a thick fouling layer with 320 alginate- Ca^{2+} gel networks, the Chelex resin in the DGT equipment can directly remove the organic-321 bound Ca²⁺ via the chelation. Owing to the extraction of the organic-bound Ca²⁺ from the membrane 322 323 surface, the structure of the fouling layer became more porous and looser. The changes in the fouling 324 structure alleviated the FO membrane fouling and further enhanced the cleaning effect. The success 325 in mitigating the FO membrane fouling induced by the sodium alginate and Ca²⁺ demonstrated the feasibility of fouling controlling strategy via directly extracting Ca²⁺ from the fouling layer. 326

327 Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number 51578265]; the Six Major Talent Peaks of Jiangsu Province [grant number 2018-JNHB-014]; the Major Science and Technology Innovation Projects of Shandong Province [grant number

331	2018CXGC1006]; the Fundamental Research Funds for the Central Universities [grant number
332	JUSRP 51728A]; and Jiangsu Cooperative Innovation Center of Technology and Material of Water
333	Treatment.
334	Appendix A. Supplementary information
335	Detailed information on additional tables and figures can be found in the Supporting
336	Information.
337	References
338	Arkhangelsky, E., Wicaksana, F., Tang, C.Y., Al-Rabiah, A.A., 2012. Combined organic-inorganic
339	fouling of forward osmosis hollow fiber membranes. Water Res. 46 (19), 6329-6338.
340	Boo, C., Lee, S., Elimelech, M., Meng, Z.Y., Hong, S., 2012. Colloidal fouling in forward osmosis:
341	Role of reverse salt diffusion. J. Membr. Sci. 390-391, 277-284.
342	Charfi, A., Jang, H., Kim, J., 2017. Membrane fouling by sodium alginate in high salinity conditions
343	to simulate biofouling during seawater desalination. Bioresour. Technol. 240, 106-114.
344	Davison, W., Zhang, H., 2012. Progress in understanding the use of diffusive gradients in thin films
345	(DGT) - back to basics. Environ. Chem. 9 (1), 1-13.
346	Degryse, F., Smolders, E., Zhang, H., Davison, W., 2009. Predicting availability of mineral
347	elements to plants with the DGT technique: a review of experimental data and interpretation
348	by modelling. Environ. Chem. 6 (3), 198-218.
349	Gu, Y.S., Wang, Y.N., Wei, J., Tang, C.Y., 2013. Organic fouling of thin-film composite polyamide
350	and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.
351	Water Res. 47, 1687-1874.
352	Guan, D.X., Williams, P.N., Luo, J., Zheng, J.L., Xu, H.C., Cai, C., Ma, L.N.Q., 2015. Novel

354

precipitated zirconia-based DGT technique for high-resolution imaging of oxyanions in waters and sediments. Environ. Sci. Technol. 49 (6), 3653-3661.

- 355 Kwan, S.E., Bar-Zeev, E., Elimelech, M., 2015. Biofouling in forward osmosis and reverse osmosis:
- 356 Measurements and mechanisms. J. Membr. Sci. 493, 703-708.
- 357 Li, Q.L., Elimelech, M., 2006. Synergistic effects in combined fouling of a loose nanofiltration
- 358 membrane by colloidal materials and natural organic matter. J. Membr. Sci. 278 (1), 72-82.
- 359 Liu, Y.L., Mi, B.X., 2012. Combined fouling of forward osmosis membranes: Synergistic foulant
- interaction and direct observation of fouling layer formation. J. Membr. Sci. 407-408, 136-144.
- 361 Luo, W.H., Phan, H.V., Xie, M., Hai, F.I., Price, W.E., Elimelech, M., Nghiem, L.D., 2017. Osmotic
- 362 versus conventional membrane bioreactors integrated with reverse osmosis for water reuse:
- Biological stability, membrane fouling, and contaminant removal. Water Res. 109, 122-134.
- Lutchmiah, K., Verliefde, A.R.D., Roest, K., Rietveld, L.C, Cornelissen, E.R., 2014. Forward
 osmosis for application in wastewater treatment: A review. Water Res. 58, 179-197.
- 366 Mi, B.X., Elimelech, M., 2008. Chemical and physical aspects of organic fouling of forward
- 367 osmosis membranes. J. Membr. Sci. 320, 292-302.
- Mi, B.X., Elimelech, M., 2010. Organic fouling of forward osmosis membranes: Fouling
 reversibility and cleaning without chemical reagents. J. Membr. Sci. 348 (1), 337-345.
- McGinnis, R.L., Elimelech, M., 2007. Energy requirements of ammonia-carbon dioxide forward
 osmosis desalination. Desalination 207 (1), 370-382.
- McGovern, R.K., Lienhard, J.H., 2014. On the potential of forward osmosis to energetically
 outperform reverse osmosis desalination. J. Membr. Sci. 469, 245-250.
- 374 Montero, N., Belzunce-Segarra, M.J., Gonzalez, J.L., Larreta, J., Franco, J., 2012. Evaluation of

diffusive gradients in thin-films (DGTs) as a monitoring tool for the assessment of the chemical
status of transitional waters within the Water Framework Directive. Mar. Pollut. Bull. 64 (1),
31-39.

5// 51-39

Motsa, M.M., Mamba, B.B., Verliefde, A.R.D., 2015. Combined colloidal and organic fouling of
FO membranes: The influence of foulant-foulant interactions and ionic strength. J. Membr. Sci.

 380
 493, 539-548.

381 Motsa, M.M., Mamba, B.B., Thwala, J.M., Verliefde, A.R.D., 2017. Osmotic backwash of fouled

382 FO membranes: Cleaning mechanisms and membrane surface properties after cleaning.

383 Desalination 402, 62-71.

- 384 Mueller, L.N., de Brouwer, J.F.C., Almeida, J.S., Stal, L.J., Xavier, J.B., 2006. Analysis of a marine
- phototrophic biofilm by confocal laser scanning microscopy using the new image
 quantification software PHLIP. BMC Ecol. 6, 1-15.
- 387 Pendashteh, A.R., Fakhru'l-Razi, A., Madaeni, S.S., Abdullah, L.C., Abidin, Z.Z., Biak, D.R.A.,
- 2011. Membrane foulants characterization in a membrane bioreactor (MBR) treating
 hypersaline oily wastewater. Chem. Eng. J. 168 (1), 140-150.
- Perez, A.L., Anderson, K.A., 2009. DGT estimates cadmium accumulation in wheat and potato from
 phosphate fertilizer applications. Sci. Total. Environ. 407 (18), 5096-5103.
- 392 Schintu, M., Marras, B., Durante, L., Meloni, P., Contu, A., 2010. Macroalgae and DGT as
- 393 indicators of available trace metals in marine coastal waters near a lead-zinc smelter. Environ.
- 394 Monit. Assess. 167 (1), 653-661.
- 395 Shaffer, D.L., Werber, J.R., Jaramillo, H., Lin, S.H, Elimelech, M., 2015. Forward osmosis: Where
- 396 are we now? Desalination 356, 271-284.

- She, Q.H., Wang, R., Fane, A.G., Tang, C.Y., 2016. Membrane fouling in osmotically driven
 membrane processes: A review. J. Membr. Sci. 499, 201-233.
- 399 Sherwood, J.E., Barnett, D., Barnett, N.W., Dover, K., Howitt, J., Ii, H., Kew, P., Mondon, J., 2009.
- 400 Deployment of DGT units in marine waters to assess the environmental risk from a deep sea
- 401 tailings outfall. Anal. Chim. Acta. 652 (1-2), 215-223.
- 402 Siddiqui, F.A., She, Q.H., Fane, A.G., Field, R.W., 2018. Exploring the differences between forward
- 403 osmosis and reverse osmosis fouling. J. Membr. Sci. 565, 241-253.
- 404 Sobeck, D.C., Higgins, M.J., 2002. Examination of three theories for mechanisms of cation-induced
- 405 bioflocculation. Water Res. 36, 527-538.
- 406 Sun, Y., Tian, J.Y., Zhao, Z.W., Shi, W.X., Liu, D.M., Cui, F.Y., 2016. Membrane fouling of
- 407 forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between
 408 direct FO and OMBR. Water Res. 104, 330-339.
- 409 Tow, E.W., Lienhard, J.H., 2016. Quantifying osmotic membrane fouling to enable comparisons
- 410 across diverse processes. J. Membr. Sci. 511, 92-107.
- 411 Town, R.M., Chakraborty, P., Van Leeuwen, H.P., 2009. Dynamic DGT speciation analysis and
- 412 applicability to natural heterogeneous complexes. Environ. Chem. 6 (2), 170-177.
- 413 Van den Brink, P., Zwijnenburg, A., Smith, G., Temmink, H., Van Loosdrecht, M., 2009. Effect of
- 414 free calcium concentration and ionic strength on alginate fouling in cross-flow membrane
- 415 filtration. J. Membr. Sci. 345 (1), 207-216.
- 416 Wang, X.M., Waite, T.D., 2009. Role of Gelling Soluble and Colloidal Microbial Products in
- 417 Membrane Fouling. Environ. Sci. Technol. 43 (24), 9341-9347.
- 418 Wang, Z.W., Ma, J.X., Tang, C.Y., Kimura, K., Wang, Q.Y., Han, X.M., 2014. Membrane cleaning

in membrane bioreactors: A review. J. Membr. Sci. 468, 276-307.

- 420 Wang, X.H., Chang, V.W.C., Tang, C.Y., 2016a. Osmotic membrane bioreactor (OMBR)
- 421 technology for wastewater treatment and reclamation: Advances, challenges, and prospects for
- 422 the future. J. Membr. Sci. 504, 113-132.
- 423 Wang, X.H., Zhao, Y.X., Yuan, B., Wang, Z.W., Li, X.F., Ren, Y.P., 2016b. Comparison of
- biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC)
 polyamide forward osmosis membranes in osmotic membrane bioreactors. Bioresour. Technol.
- 426 202, 50-58.
- Wang, X.H., Hu, T.Z., Wang, Z.W., Li, X.F., Ren, Y.P., 2017. Permeability recovery of fouled
 forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic
- 429 osmotic membrane bioreactors treating low-strength wastewater. Water Res. 123, 505-512.
- 430 Wang, X.H., Zhang, J.F., Chang, V.W.C., She Q.H., Tang C.Y., 2018a. Removal of cytostatic drugs
- from wastewater by an anaerobic osmotic membrane bioreactor. Chem. Eng. J. 339, 153-161.
- 432 Wang, W.Y., Yue, Q.Y., Li, R.H., Bu, F., Shen, X., Gao, B.Y., 2018b. Optimization of coagulation
- pre-treatment for alleviating ultrafiltration membrane fouling: The role of floc properties on Al
 species. Chemosphere 200, 86-92.
- 435 Wang, H.L., Wang, X.H., Meng, F.G., Li, X.F., Ren, Y.P., She, Q.H., 2019. Effect of driving force
- on the performance of anaerobic osmotic membrane bioreactors: New insight into enhancing
 water flux of FO membrane via controlling driving force in a two-stage pattern. J. Membr. Sci.
- 438 569, 41-47.
- Warnken, K.W., Zhang, H., Davison, W., 2006. Accuracy of the Diffusive Gradients in Thin-Films
 Technique: Diffusive boundary layer and effective sampling area considerations. Anal. Chem.

- 441 78 (11), 3780-3787.
- Wu, B., An, Y.Y., Li, Y.Z., Wong, F.S., 2009. Effect of adsorption/coagulation on membrane
 fouling in microfiltration process post-treating anaerobic digestion effluent. Desalination 242
 (1), 183-192.
- Xie, M., Nghiem, L.D., Price, W.E., Elimelech, M., 2013. Impact of humic acid fouling on
 membrane performance and transport of pharmaceutically active compounds in forward
 osmosis. Water Res. 47 (13), 4567-4575.
- 448 Yoon, H., Baek, Y., Yu, J., Yoon, J., 2013. Biofouling occurrence process and its control in the
- forward osmosis. Desalination 325, 30-36.
- 450 Yu, G.H., Tang, Z., Xu, Y.C., Shen, Q.R., 2011. Multiple fluorescence labeling and two dimensional
- 451 FTIR-13C NMR heterospectral correlation spectroscopy to characterize extracellular
 452 polymeric substances in biofilms produced during composting. Environ. Sci. Technol. 45 (21),
 453 9224-9231.
- 454 Yuan, B., Wang, X.H., Tang, C.Y., Li, X.F., Yu, G.H., 2015. In situ observation of the growth of
- biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and
 confocal laser scanning microscopy. Water Res. 75, 188-200.
- 457 Zhang, H., Davison, W., 1995. Performance Characteristics of Diffusion Gradients in Thin Films
- 458 for the in Situ Measurement of Trace Metals in Aqueous Solution. Anal. Chem. 67 (19), 3391459 3400.
- Zhang, H., Davison, W., Knight, B., McGrath, S., 1998. In Situ Measurements of Solution
 Concentrations and Fluxes of Trace Metals in Soils Using DGT. Environ. Sci. Technol. 32 (5),
- 462 704-710.

- Zhang, H., Davison, W., 2015. Use of diffusive gradients in thin-films for studies of chemical
 speciation and bioavailability. Environ. Chem. 12 (2), 85-101.
- 465 Zhao, S.F., Zou, L., Tang, C.Y., Mulcahy, D., 2012. Recent developments in forward osmosis:
- 466 Opportunities and challenges. J. Membr. Sci. 396, 1-21.
- 467 Zheng, L., Price, W.E., Nghiem, L.D., 2018. Effects of fouling on separation performance by
- 468 forward osmosis: the role of specific organic foulants. Environ. Sci. Pollut. R. 1-12.

- 470 **Table Captions**
- 471 Table 1 Structural parameters of fouling layer before and after DGT adsorption obtained from
- 472 CLSM images via PHLIP^a.

473 Figure Captions

- 474 Fig. 1. Schematic view of the DGT adsorption device for the fouled FO membranes.
- 475 Fig. 2. Water flux profile of FO membranes during fouling filtration. FO fouling filtration was
- 476 conducted with feed solution containing 200 mg/L sodium alginate, 20 mM NaCl, 20 mM Na₂SO₄
- 477 and 1 mM NaHCO₃, with varying calcium concentration from 1 to 35 mM. Draw solution was 4 M
- 478 NaCl. The filtration was operated for 24 hours.
- 479 Fig. 3. DGT performance in fouling mitigation: (A) Normalized water flux and (B) DGT adsorption
- 480 amount and efficiency at different fouling conditions. The FO fouling filtration conditions were
- described in Figure 2. DGT adsorption was performed using a DGT device with Chelex-100 strip,
- 482 1 M HNO₃ as the eluent. The error bar represents the standard deviation from three repeated483 experiments.
- 1
- 484 Fig. 4. SEM images of the fouled (A) and DGT adsorbed (B) FO membranes: (a) single organic
- 485 fouling; (b) organic fouling + 1 mM Ca^{2+} ; (c) organic fouling + 15 mM Ca^{2+} ; (d) organic fouling +

486 35 mM Ca²⁺.

- 487 Fig. 5. CLSM images of the fouled (A) and DGT adsorbed (B) FO membranes with alginate and 35
- 488 mM Ca²⁺ and normalized water flux before and after backwashing (C). Experimental condition for
- 489 FO filtration was described in Figure 2, and DGT adsorption protocol was described in Figure 3.
- 490 Fig. 6. Mechanisms of Ca^{2+} adsorption from the fouling layer by the DGT technology.
- 491

		Average amount of	Porosity	Mean thickness		
	Fouling layer	polysaccharide	(%)	(µm)		
		$(\mu m^3 \mu m^{-2})$				
	single organic fouling	12.25 ± 0.41	32.10 ± 4.70	24.85 ± 1.32		
Before DGT	organic fouling + 1 mM Ca ²⁺	13.00 ± 1.08	22.78 ± 7.54	24.81 ± 3.69		
adsorption	organic fouling + 15 mM Ca ²⁺	14.06 ± 0.93	18.26 ± 9.46	26.26 ± 1.44		
	organic fouling + 35 mM Ca ²⁺	$14.13\pm\!0.87$	$16.27\pm\!0.80$	25.56 ± 3.38		
	single organic fouling	12.45 ± 0.05	35.06 ±2.51	24.68 ± 3.26		
After DGT	organic fouling + 1 mM Ca ²⁺	12.40 ± 0.09	$33.49\pm\!\!2.90$	22.31 ±0.95		
adsorption	organic fouling + 15 mM Ca ²⁺	13.00 ± 0.19	28.14 ± 8.81	23.46±0.29		
	organic fouling + 35 mM Ca ²⁺	13.14 ± 0.26	20.86 ± 3.62	24.78 ± 0.49		
494 ^a Values are given as mean values ± standard deviation (number of measurements: n=3). The						
495 scanning area was $850 \times 850 \ \mu m^2$ in size.						
496						
497						
498						
499						
500						

Fig. 3. DGT performance in fouling mitigation: (A) Normalized water flux and (B) DGT

adsorption amount and efficiency at different fouling conditions. The FO fouling filtration

540	conditions were described in Figure 2. DGT adsorption was performed using a DGT device with				
541	Chelex-100 strip, 1 M HNO ₃ as the eluent. The error bar represents the standard deviation from				
542	three repeated experiments.				
543					
544					
545					
546					
547					
548					
549					
550					
551					
552					
553					
554					
555					
556					
557					
558					
559					
560					
561					

- fouling; (b) organic fouling + 1 mM Ca^{2+} ; (c) organic fouling + 15 mM Ca^{2+} ; (d) organic fouling +
- 35 mM Ca²⁺.

580 Fig. 5. CEISM images of the found (A) and DOT adsorbed (B) FO membranes with arginate and
581 35 mM Ca²⁺ and normalized water flux before and after backwashing (C). Experimental condition
582 for FO filtration was described in Figure 2, and DGT adsorption protocol was described in Figure
583 3.
584

588 Fig. 6. Mechanisms of Ca^{2+} adsorption from the fouling layer by the DGT technology.