168 research outputs found

    Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes

    Full text link
    Quantum synchronizable codes are quantum error-correcting codes designed to correct the effects of both quantum noise and block synchronization errors. While it is known that quantum synchronizable codes can be constructed from cyclic codes that satisfy special properties, only a few classes of cyclic codes have been proved to give promising quantum synchronizable codes. In this paper, using quadratic residue codes and their supercodes, we give a simple construction for quantum synchronizable codes whose synchronization capabilities attain the upper bound. The method is applicable to cyclic codes of prime length

    Data Asset Management and Visualization Based on Intelligent Algorithm: Taking Power Equipment Data as An Example

    Get PDF
    Data asset management is adequate in solving the problem of data silence and data idleness for enterprises. Through intelligent algorithms such as neural network, in-depth learning and block chain, and guided by business needs, it extracts, analyzes and visualizes the existing business precipitation data, and forms scattered and disordered data into valuable information to support the development of the company, so as to activate data assets. Taking the management data of electric power equipment as an example, this paper proposes a method of fusion of multiple intelligent control algorithms. The specific modules include the fusion of heterogeneous data; feature extraction of equipment asset management data based on machine learning; intelligent control of multi-objective optimization environment based on energy consumption data; BIM data visualization based on data classification-energy extraction-neural network (SVM-CART-SAE-DNN) algorithm fusion. The algorithm can effectively improve the efficiency of equipment management and enhance the security and economy of power infrastructure through intelligent control of equipment management

    Information-Coupled Turbo Codes for LTE Systems

    Full text link
    We propose a new class of information-coupled (IC) Turbo codes to improve the transport block (TB) error rate performance for long-term evolution (LTE) systems, while keeping the hybrid automatic repeat request protocol and the Turbo decoder for each code block (CB) unchanged. In the proposed codes, every two consecutive CBs in a TB are coupled together by sharing a few common information bits. We propose a feed-forward and feed-back decoding scheme and a windowed (WD) decoding scheme for decoding the whole TB by exploiting the coupled information between CBs. Both decoding schemes achieve a considerable signal-to-noise-ratio (SNR) gain compared to the LTE Turbo codes. We construct the extrinsic information transfer (EXIT) functions for the LTE Turbo codes and our proposed IC Turbo codes from the EXIT functions of underlying convolutional codes. An SNR gain upper bound of our proposed codes over the LTE Turbo codes is derived and calculated by the constructed EXIT charts. Numerical results show that the proposed codes achieve an SNR gain of 0.25 dB to 0.72 dB for various code parameters at a TB error rate level of 10210^{-2}, which complies with the derived SNR gain upper bound.Comment: 13 pages, 12 figure
    corecore