48 research outputs found

    Physiological response of natural C-taklimakanensis BRPan et GMShen to unconfined groundwater in the hinterland of the Taklimakan Desert

    Get PDF
    Calligonum. taklimakanensis B.R.Pan et G.M.Shen is an indigenous species that grows in the Taklimakan Desert. This study shows the relationship between C. taklimakanensis B.R.Pan et G.M.Shen and water conditions in the hinterland of the desert. The results show that: (1) Depth of water table is an important factor that affects water potential (Psi(p), Psi(A)), osmotic potential (Psi(sat), Psi(tlp)), relative water content (RWCtlp, ROWCtlp), and transpiration rate. (2) The degree of mineralization has a significant impact on the water potential of plants. A high degree of mineralization can strongly reduce plant productivity. (3) C. taklimakanensis B.R.Pan et G.M.Shen reduces the temperature of assimilation sticks through a high transpiration rate and maintains relatively high water content to adapt to drought and hot weather conditions in the hinterland of the desert. In addition, C. taklimakanensis B.R.Pan et G.M.Shen adapts to the water status in the desert through self-regulation or even sacrificing productivity

    The oyster genome reveals stress adaptation and complexity of shell formation

    Get PDF
    The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa. © 2012 Macmillan Publishers Limited. All rights reserved

    Joint Optimization of Beamforming, Phase-Shifting and Power Allocation in a Multi-cluster IRS-NOMA Network

    No full text
    The combination of non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) is an efficient solution to significantly enhance the energy efficiency of the wireless communication system. In this paper, we focus on a downlink multi-cluster NOMA network, where each cluster is supported by one IRS. We aim to minimize the transmit power by jointly optimizing the beamforming, the power allocation and the phase shift of each IRS. The formulated problem is non-convex and challenging to solve due to the coupled variables, i.e., the beamforming vector, the power allocation coefficient and the phase shift matrix. To address this non-convex problem, we propose an alternating optimization based algorithm. Specifically, we divide the primal problem into the two subproblems for beamforming optimization and phase shifting feasiblity, where the two subproblems are solved iteratively. Moreover, to guarantee the feasibility of the beamforming optimization problem, an iterative algorithm is proposed to search the feasible initial points. To reduce the complexity, we also propose a simplified algorithm based on partial exhaustive search for this system model. Simulation results demonstrate that the proposed alternating algorithm can yield a better performance gain than the partial exhaustive search algorithm, OMA-IRS, and NOMA with random IRS phase shift

    Friction Behavior between Carbon Fiber Plain Weave and Metal Semi-Cylinder Tool

    No full text
    The deformations that occur during composite forming processes are governed by the friction between the fabrics and tooling material on the mesoscopic level. The effect of normal load and multi-plies on the frictional behavior of the carbon plain weave is investigated by simulating the friction between the fabric and metal semi-cylinder tool by using the experimental method. The periodic wavy friction-displacement curve between the metal tool and fabric is caused by the interwoven structure of the fabric. Both the increase in the normal load and the number of layers cause an increase in the real contact area during friction, leading to an increase in the friction force. The real contact area is calculated based on the Hertzian contact model and the self-designed testing method. The friction force values obtained from multiplying the real contact area with shear strength are closely aligned with the measured results

    Deep Reinforcement Learning Based Optimization for IRS Based UAV-NOMA Downlink Networks

    Full text link
    This paper investigates the application of deep deterministic policy gradient (DDPG) to intelligent reflecting surface (IRS) based unmanned aerial vehicles (UAV) assisted non-orthogonal multiple access (NOMA) downlink networks. The deployment of the UAV equipped with an IRS is important, as the UAV increases the flexibility of the IRS significantly, especially for the case of users who have no line of sight (LoS) path to the base station (BS). Therefore, the aim of this letter is to maximize the sum rate by jointly optimizing the power allocation of the BS, the phase shifting of the IRS and the horizontal position of the UAV. Because the formulated problem is not convex, the DDPG algorithm is utilized to solve it. The computer simulation results are provided to show the superior performance of the proposed DDPG based algorithm
    corecore