10 research outputs found

    A Method for Measuring the Attachment Strength of the Cestode \u3ci\u3eHymenolepis diminuta\u3c/i\u3e to the Rat Intestine

    Get PDF
    A unique adaptation of many internal parasites of mammals is their ability to stay in the intestine for extended periods of time and resist the normal peristaltic movements and forces that push and expel material. To better understand parasite adhesion behavior and replicate their attachment method in medical devices, an experiment was designed and performed using the rat tapeworm, Hymenolepis diminuta. The experiment employed a tensile test machine and a digital scale and was designed to calculate the attachment strength of the scolex to the mucosa through the change of the value of the digital scale during the tensile test. The attachment force of H. diminuta is 0.021 ± 0.011 g. This method could be applied in studies of parasite biomechanics and the results may help medical device researchers to better mimic the unique functional morphology of this species of parasite

    GASTROINTESTINAL SENSOR IMPLANTATION SYSTEM

    Get PDF
    A gastrointestinal ( GI ) sensor deployment device is dis closed . In implementations , the sensor deployment device includes an orally - administrable capsule with a tissue cap ture device removably coupled to the orally - administrable capsule . The tissue capture device includes a plurality of fasteners for connecting the tissue capture device to GI tissue within a body . A biometric sensor is coupled to the tissue capture device for continuous or periodic monitoring of the GI tract of the body at the GI tissue attachment location . A chamber within the orally - administrable capsule is configured to draw gastrointestinal tissue towards the plurality of fasteners when a fluid pressure of the chamber is increased . An actuator can be configured to cause an increase of the fluid pressure of the chamber . Control circuitry coupled to the actuator can be configured to trigger the actuator to cause the increase of the fluid pressure of the chamber at a selected tim

    DESIGN AND VALIDATION OF AN IN VIVO LONG-TERM ATTACHMENT CAPSULE ROBOT

    Get PDF
    The invention of capsule endoscopy (CE) made the non-invasive monitoring of the entire small bowel possible and became the primary means for diagnosing small bowel pathology. In the last decade, capsule robots have been transformed from diagnostic devices into a widely studied biomedical platform with the potential for active locomotion, drug delivery and therapeutic capabilities. To perform accurate on-site drug release and therapy, it is necessary for a capsule robot to be able to attach to the intestinal tissue and maintain its position long-term. Design challenges derive from the task of long-term mucosal adhesion which requires firm, quick-response attachment without causing unacceptable trauma or complications. In this work, we initiate a study to address the challenges associated with long-term attachment and explore possible solutions. First, a method to quantify the attachment behavior of parasites was developed. This method could be applied to studies of parasite biomechanics and the results may help medical device researchers better mimic the unique functional morphology of intestinal parasites. Second, a tissue attachment mechanism inspired by the parasite attachment approach was designed, optimized and tested for safety and adhesive capabilities on animal models in vitro and in vivo. Next, a long-term, non-invasive, non-restrictive implantation capsule robot for delivering and implanting a biosensor within the tissue attachment mechanism in the intestine was developed. Testing on a live porcine model provided evidence that this is a promising approach for implanting a biosensor within the small intestine. Finally, a finite element method for simulating the attachment interaction between the intestine and capsule was applied with the goal of providing a detailed guide to further system optimization. The prototype of this study offers more than 40 hours in vivo attachment without causing serious damage and has the potential to be translated into clinical usage. Advisor: Benjamin S. Terr

    A Method for Measuring the Attachment Strength of the Cestode \u3ci\u3eHymenolepis diminuta\u3c/i\u3e to the Rat Intestine

    Get PDF
    A unique adaptation of many internal parasites of mammals is their ability to stay in the intestine for extended periods of time and resist the normal peristaltic movements and forces that push and expel material. To better understand parasite adhesion behavior and replicate their attachment method in medical devices, an experiment was designed and performed using the rat tapeworm, Hymenolepis diminuta. The experiment employed a tensile test machine and a digital scale and was designed to calculate the attachment strength of the scolex to the mucosa through the change of the value of the digital scale during the tensile test. The attachment force of H. diminuta is 0.021 ± 0.011 g. This method could be applied in studies of parasite biomechanics and the results may help medical device researchers to better mimic the unique functional morphology of this species of parasite

    GASTROINTESTINAL SENSOR IMPLANTATION SYSTEM

    Get PDF
    A gastrointestinal ( GI ) sensor deployment device is dis closed . In implementations , the sensor deployment device includes an orally - administrable capsule with a tissue cap ture device removably coupled to the orally - administrable capsule . The tissue capture device includes a plurality of fasteners for connecting the tissue capture device to GI tissue within a body . A biometric sensor is coupled to the tissue capture device for continuous or periodic monitoring of the GI tract of the body at the GI tissue attachment location . A chamber within the orally - administrable capsule is configured to draw gastrointestinal tissue towards the plurality of fasteners when a fluid pressure of the chamber is increased . An actuator can be configured to cause an increase of the fluid pressure of the chamber . Control circuitry coupled to the actuator can be configured to trigger the actuator to cause the increase of the fluid pressure of the chamber at a selected tim

    Biomimetic Attachment to the Gastrointestinal Tract1

    No full text

    Metal Sulfide‐Based Nanoarchitectures for Energetic and Environmental Applications

    No full text
    Despite their numerous excellent properties, metal sulfides are not particularly efficient at converting energy and purifying the environment, which limits their further applications. Fortunately, the energy conversion and environmental purification efficiencies of these materials have experienced notable advancements in recent years, accompanied by an improved understanding of their underlying mechanisms. Herein, progress in experimental researches in recent years on the engineering of single component metal sulfides by controlling morphology, construction of heterojunctions, and incorporating elements is reviewed. Methods to design and prepare metal sulfide‐based composites by building binary or ternary heterojunctions of metal sulfide/semiconductor/conductor are also discussed in detail. These materials are used in energy conversion and environmental purification systems, where they act as photocatalytic materials not only to split water, reduce carbon dioxide or nitrogen, but also to degrade pollutants (organic and inorganic) in water and gas. Finally, it is concluded by summarizing the research frontiers of metal sulfide nanomaterials in energy and environmental applications, as well as proposing potential challenges and future research directions. This work may contribute to a better understanding of metal sulfide nanocomposites and provide clues for the fabrication of more efficient metal sulfide‐based nanostructures for clean energy production and environmental remediation

    Are medical record front page data suitable for risk adjustment in hospital performance measurement? Development and validation of a risk model of in-hospital mortality after acute myocardial infarction

    No full text
    Objectives To develop a model of in-hospital mortality using medical record front page (MRFP) data and assess its validity in case-mix standardisation by comparison with a model developed using the complete medical record data.Design A nationally representative retrospective study.Setting Representative hospitals in China, covering 161 hospitals in modelling cohort and 156 hospitals in validation cohort.Participants Representative patients admitted for acute myocardial infarction. 8370 patients in modelling cohort and 9704 patients in validation cohort.Primary outcome measures In-hospital mortality, which was defined explicitly as death that occurred during hospitalisation, and the hospital-level risk standardised mortality rate (RSMR).Results A total of 14 variables were included in the model predicting in-hospital mortality based on MRFP data, with the area under receiver operating characteristic curve of 0.78 among modelling cohort and 0.79 among validation cohort. The median of absolute difference between the hospital RSMR predicted by hierarchical generalised linear models established based on MRFP data and complete medical record data, which was built as ‘reference model’, was 0.08% (10th and 90th percentiles: −1.8% and 1.6%). In the regression model comparing the RSMR between two models, the slope and intercept of the regression equation is 0.90 and 0.007 in modelling cohort, while 0.85 and 0.010 in validation cohort, which indicated that the evaluation capability from two models were very similar.Conclusions The models based on MRFP data showed good discrimination and calibration capability, as well as similar risk prediction effect in comparison with the model based on complete medical record data, which proved that MRFP data could be suitable for risk adjustment in hospital performance measurement
    corecore