1,418 research outputs found

    An effective likelihood-free approximate computing method with statistical inferential guarantees

    Get PDF
    Approximate Bayesian computing is a powerful likelihood-free method that has grown increasingly popular since early applications in population genetics. However, complications arise in the theoretical justification for Bayesian inference conducted from this method with a non-sufficient summary statistic. In this paper, we seek to re-frame approximate Bayesian computing within a frequentist context and justify its performance by standards set on the frequency coverage rate. In doing so, we develop a new computational technique called approximate confidence distribution computing, yielding theoretical support for the use of non-sufficient summary statistics in likelihood-free methods. Furthermore, we demonstrate that approximate confidence distribution computing extends the scope of approximate Bayesian computing to include data-dependent priors without damaging the inferential integrity. This data-dependent prior can be viewed as an initial `distribution estimate' of the target parameter which is updated with the results of the approximate confidence distribution computing method. A general strategy for constructing an appropriate data-dependent prior is also discussed and is shown to often increase the computing speed while maintaining statistical inferential guarantees. We supplement the theory with simulation studies illustrating the benefits of the proposed method, namely the potential for broader applications and the increased computing speed compared to the standard approximate Bayesian computing methods

    Finite- and Large- Sample Inference for Model and Coefficients in High-dimensional Linear Regression with Repro Samples

    Full text link
    In this paper, we present a new and effective simulation-based approach to conduct both finite- and large-sample inference for high-dimensional linear regression models. This approach is developed under the so-called repro samples framework, in which we conduct statistical inference by creating and studying the behavior of artificial samples that are obtained by mimicking the sampling mechanism of the data. We obtain confidence sets for (a) the true model corresponding to the nonzero coefficients, (b) a single or any collection of regression coefficients, and (c) both the model and regression coefficients jointly. We also extend our approaches to drawing inferences on functions of the regression coefficients. The proposed approach fills in two major gaps in the high-dimensional regression literature: (1) lack of effective approaches to address model selection uncertainty and provide valid inference for the underlying true model; (2) lack of effective inference approaches that guarantee finite-sample performances. We provide both finite-sample and asymptotic results to theoretically guarantee the performances of the proposed methods. In addition, our numerical results demonstrate that the proposed methods are valid and achieve better coverage with smaller confidence sets than the existing state-of-art approaches, such as debiasing and bootstrap approaches

    A note on Dempster-Shafer recombination of confidence distributions

    Get PDF
    It is often the case that there are several studies measuring the same parameter. Naturally, it is of interest to provide a systematic way to combine the information from these studies. Examples of such situations include clinical trials, key comparison trials and other problems of practical importance. Singh et al. (2005) provide a compelling framework for combining information from multiple sources using the framework of confidence distributions. In this paper we investigate the feasibility of using the Dempster-Shafer recombination rule on this problem. We derive a practical combination rule and show that under assumption of asymptotic normality, the Dempster-Shafer combined confidence distribution is asymptotically equivalent to one of the method proposed in Singh et al. (2005). Numerical studies and comparisons for the common mean problem and the odds ratio in 2×22\times 2 tables are included

    TextPainter: Multimodal Text Image Generation with Visual-harmony and Text-comprehension for Poster Design

    Full text link
    Text design is one of the most critical procedures in poster design, as it relies heavily on the creativity and expertise of humans to design text images considering the visual harmony and text-semantic. This study introduces TextPainter, a novel multimodal approach that leverages contextual visual information and corresponding text semantics to generate text images. Specifically, TextPainter takes the global-local background image as a hint of style and guides the text image generation with visual harmony. Furthermore, we leverage the language model and introduce a text comprehension module to achieve both sentence-level and word-level style variations. Besides, we construct the PosterT80K dataset, consisting of about 80K posters annotated with sentence-level bounding boxes and text contents. We hope this dataset will pave the way for further research on multimodal text image generation. Extensive quantitative and qualitative experiments demonstrate that TextPainter can generate visually-and-semantically-harmonious text images for posters.Comment: Accepted to ACM MM 2023. Dataset Link: https://tianchi.aliyun.com/dataset/16003
    • …
    corecore