348 research outputs found

    Performance Analysis for Near-Field MIMO: Discrete and Continuous Aperture Antennas

    Full text link
    Performance analysis is carried out in a near-field multiple-input multiple-output (MIMO) system for both discrete and continuous aperture antennas. The effective degrees of freedom (EDoF) is first derived. It is shown that near-field MIMO systems have a higher EDoF than free-space far-field ones. Additionally, the near-field EDoF further depends on the communication distance. Based on the derived EDoF, closed-form expressions of channel capacity with a fixed distance are obtained. As a further advance, with randomly deployed receivers, ergodic capacity is derived. Simulation results reveal that near-field MIMO has an enhanced multiplexing gain even under line-of-sight transmissions. In addition, the performance of discrete MIMO converges to that of continuous-aperture MIMO.Comment: 5 pages, 3 figure

    SC-Track: a robust cell tracking algorithm for generating accurate single-cell lineages from diverse cell segmentations

    Get PDF
    Computational analysis of fluorescent timelapse microscopy images at the single-cell level is a powerful approach to study cellular changes that dictate important cell fate decisions. Core to this approach is the need to generate reliable cell segmentations and classifications necessary for accurate quantitative analysis. Deep learning-based convolutional neural networks (CNNs) have emerged as a promising solution to these challenges. However, current CNNs are prone to produce noisy cell segmentations and classifications, which is a significant barrier to constructing accurate single-cell lineages. To address this, we developed a novel algorithm called Single Cell Track (SC-Track), which employs a hierarchical probabilistic cache cascade model based on biological observations of cell division and movement dynamics. Our results show that SC-Track performs better than a panel of publicly available cell trackers on a diverse set of cell segmentation types. This cell-tracking performance was achieved without any parameter adjustments, making SC-Track an excellent generalised algorithm that can maintain robust cell-tracking performance in varying cell segmentation qualities, cell morphological appearances and imaging conditions. Furthermore, SC-Track is equipped with a cell class correction function to improve the accuracy of cell classifications in multi-class cell segmentation time series. These features together make SC-Track a robust cell-tracking algorithm that works well with noisy cell instance segmentation and classification predictions from CNNs to generate accurate single-cell lineages and classifications

    Deep Industrial Image Anomaly Detection: A Survey

    Full text link
    The recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the new setting from industrial manufacturing and review the current IAD approaches under our proposed our new setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection

    EasyNet: An Easy Network for 3D Industrial Anomaly Detection

    Full text link
    3D anomaly detection is an emerging and vital computer vision task in industrial manufacturing (IM). Recently many advanced algorithms have been published, but most of them cannot meet the needs of IM. There are several disadvantages: i) difficult to deploy on production lines since their algorithms heavily rely on large pre-trained models; ii) hugely increase storage overhead due to overuse of memory banks; iii) the inference speed cannot be achieved in real-time. To overcome these issues, we propose an easy and deployment-friendly network (called EasyNet) without using pre-trained models and memory banks: firstly, we design a multi-scale multi-modality feature encoder-decoder to accurately reconstruct the segmentation maps of anomalous regions and encourage the interaction between RGB images and depth images; secondly, we adopt a multi-modality anomaly segmentation network to achieve a precise anomaly map; thirdly, we propose an attention-based information entropy fusion module for feature fusion during inference, making it suitable for real-time deployment. Extensive experiments show that EasyNet achieves an anomaly detection AUROC of 92.6% without using pre-trained models and memory banks. In addition, EasyNet is faster than existing methods, with a high frame rate of 94.55 FPS on a Tesla V100 GPU

    Mixed Far-Field and Near-Field Source Localization Algorithm via Sparse Subarrays

    Get PDF
    Based on a dual-size shift invariance sparse linear array, this paper presents a novel algorithm for the localization of mixed far-field and near-field sources. First, by constructing a cumulant matrix with only direction-of-arrival (DOA) information, the proposed algorithm decouples the DOA estimation from the range estimation. The cumulant-domain quarter-wavelength invariance yields unambiguous estimates of DOAs, which are then used as coarse references to disambiguate the phase ambiguities in fine estimates induced from the larger spatial invariance. Then, based on the estimated DOAs, another cumulant matrix is derived and decoupled to generate unambiguous and cyclically ambiguous estimates of range parameter. According to the coarse range estimation, the types of sources can be identified and the unambiguous fine range estimates of NF sources are obtained after disambiguation. Compared with some existing algorithms, the proposed algorithm enjoys extended array aperture and higher estimation accuracy. Simulation results are given to validate the performance of the proposed algorithm
    • …
    corecore