326 research outputs found

    Collective Dynamics of Swarms with a New Attraction/Repulsion Function

    Get PDF
    We specify an “individual-based” continuous-time model for swarm aggregation in -dimensional Euclidean space. We show that the swarm is completely stable, and the center of the swarm is stationary. Numerical simulations indicate that the individuals will form a stable and cohesive swarm, and under the attraction/repulsion function, the bound of the swarm size will increase as the number of individuals increases

    Real-Time Illegal Parking Detection System Based on Deep Learning

    Full text link
    The increasing illegal parking has become more and more serious. Nowadays the methods of detecting illegally parked vehicles are based on background segmentation. However, this method is weakly robust and sensitive to environment. Benefitting from deep learning, this paper proposes a novel illegal vehicle parking detection system. Illegal vehicles captured by camera are firstly located and classified by the famous Single Shot MultiBox Detector (SSD) algorithm. To improve the performance, we propose to optimize SSD by adjusting the aspect ratio of default box to accommodate with our dataset better. After that, a tracking and analysis of movement is adopted to judge the illegal vehicles in the region of interest (ROI). Experiments show that the system can achieve a 99% accuracy and real-time (25FPS) detection with strong robustness in complex environments.Comment: 5pages,6figure

    Evolution of interactions and cooperation in the spatial prisoner's dilemma game

    Get PDF
    We study the evolution of cooperation in the spatial prisoner's dilemma game where players are allowed to establish new interactions with others. By employing a simple coevolutionary rule entailing only two crucial parameters, we find that different selection criteria for the new interaction partners as well as their number vitally affect the outcome of the game. The resolution of the social dilemma is most probable if the selection favors more successful players and if their maximally attainable number is restricted. While the preferential selection of the best players promotes cooperation irrespective of game parametrization, the optimal number of new interactions depends somewhat on the temptation to defect. Our findings reveal that the "making of new friends" may be an important activity for the successful evolution of cooperation, but also that partners must be selected carefully and their number limited.Comment: 14 pages, 6 figures; accepted for publication in PLoS ON

    Autonomous Optimization of Swimming Gait in a Fish Robot With Multiple Onboard Sensors

    Get PDF
    Autonomous gait optimization is an essential survival ability for mobile robots. However, it remains a challenging task for underwater robots. This paper addresses this problem for the locomotion of a bio-inspired robotic fish and aims at identifying fast swimming gait autonomously by the robot. Our approach for learning locomotion controllers mainly uses three components: 1) a biological concept of central pattern generator to obtain specific gaits; 2) an onboard sensory processing center to discover the environment and to evaluate the swimming gait; and 3) an evolutionary algorithm referred to as particle swarm optimization. A key aspect of our approach is the swimming gait of the robot is optimized autonomously, equivalent to that the robot is able to navigate and evaluate its swimming gait in the environment by the onboard sensors, and simultaneously run a built-in evolutionary algorithm to optimize its locomotion all by itself. Forward speed optimization experiments conducted on the robotic fish demonstrate the effectiveness of the developed autonomous optimization system. The latest results show that our robotic fish attained a maximum swimming speed of 1.011 BL/s (40.42 cm/s) through autonomous gait optimization, faster than any of the robot's previously recorded speeds

    Graded extensions in K[Q, sigma]

    Full text link
    Let V be a total valuation ring of a division ring K, Q be the additive group of the rational numbers, Aut(K) be the group of automorphisms of K. Let sigma be a group homomorphism from Q to Aut(K). Let K[Q, sigma ] be the skew group ring of Q over K. In this paper, we classify graded extensions of V in K[Q, sigma] into two types and study the structure of them
    • …
    corecore