39 research outputs found

    Synergistic Antitumor Effect of Dichloroacetate in Combination with 5-Fluorouracil in Colorectal Cancer

    Get PDF
    Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been recently demonstrated as a promising nontoxic antineoplastic agent that promotes apoptosis of cancer cells. In the present study, we aimed to investigate the antitumor effect of DCA combined with 5-Fluorouracil (5-FU) on colorectal cancer (CRC) cells. Four human CRC cell lines were treated with DCA or 5-FU, or a combination of DCA and 5-FU. The cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The interaction between DCA and 5-FU was evaluated by the median effect principle. Immunocytochemistry with bromodeoxyuridine (BrdU) was carried out to determine the proliferation of CRC cells. Cell cycle and apoptosis were measured by flow cytometry, and the expression of apoptosis-related molecules was assessed by western blot. Our results demonstrated that DCA inhibited the viability of CRC cells and had synergistic antiproliferation in combination with 5-FU. Moreover, compared with 5-FU alone, the apoptosis of CRC cells treated with DCA and 5-FU was enhanced and demonstrated with the changes of Bcl-2, Bax, and caspase-3 proteins. Our results suggest that DCA has a synergistic antitumor effect with 5-FU on CRC cell lines in vitro

    Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation

    Get PDF
    AbstractPhosphate-activated mitochondrial glutaminase (GLS2) is suggested to be linked with elevated glutamine metabolism. It plays an important role in catalyzing the hydrolysis of glutamine to glutamate. The present study was to investigate the potent effect of GLS2 on radioresistance of cervical carcinoma. GLS2 was examined in 144 cases of human cervical cancer specimens (58 radioresistant specimens, 86 radiosensitive specimens) and 15 adjacent normal cervical specimens with immunohistochemistry. HeLa cells were treated with a cumulative dose of 50Gy X-rays, over 6months, yielding the resistant sub-line HeLaR. The expressions of GLS2 were measured by Western blot. Radioresistance was tested by colony survival assay. Apoptosis was determined by flow cytometry. The levels of glutathione (GSH), reactive oxygen species (ROS), NAD+/NADH ratio and NADP+/NADPH ratio were detected by quantization assay kit. Xenografts were used to confirm the effect of GLS2 on radioresistance in vivo. The expressions of GLS2 were significantly enhanced in tumor tissues of radioresistant patients compared with that in radiosensitive patients. In vitro, the radioresistant cell line HeLaR exhibited significantly increased GLS2 levels than its parental cell line HeLa. GLS2 silenced radioresistant cell HeLaR shows substantially enhanced radiosensitivity with lower colony survival and higher apoptosis in response to radiation. In vivo, xenografts with GLS2 silenced HeLaR were more sensitive to radiation. At the molecular level, knock-down of GLS2 increased the intracellular ROS levels of HeLaR exposed to irradiation by decreasing the productions of antioxidant GSH, NADH and NADPH. GLS2 may have an important role in radioresistance in cervical cancer patients

    Loss of Abhd5 Promotes Colorectal Tumor Development and Progression by Inducing Aerobic Glycolysis and Epithelial-Mesenchymal Transition

    Get PDF
    How cancer cells shift metabolism to aerobic glycolysis is largely unknown. Here, we show that deficiency of a/b-hydrolase domain-containing 5 (Abhd5), an intracellular lipolytic activator that is also known as comparative gene identification 58 (CGI-58), promotes this metabolic shift and enhances malignancies of colorectal carcinomas (CRCs). Silencing of Abhd5 in normal fibroblasts induces malignant transformation. Intestine-specific knockout of Abhd5 in ApcMin/+ mice robustly increases tumorigenesis and malignant transformation of adenomatous polyps. In colon cancer cells, Abhd5 deficiency induces epithelial-mesenchymal transition by suppressing the AMPKa-p53 pathway, which is attributable to increased aerobic glycolysis. In human CRCs, Abhd5 expression falls substantially and correlates negatively with malignant features. Our findings link Abhd5 to CRC pathogenesis and suggest that cancer cells develop aerobic glycolysis by suppressin

    The Extra Domain A of Fibronectin Increases VEGF-C Expression in Colorectal Carcinoma Involving the PI3K/AKT Signaling Pathway

    Get PDF
    The extra domain A (EDA)-containing fibronectin (EDA-FN), an alternatively spliced form of the extracellular matrix protein fibronectin, is predominantly expressed in various malignancies but not in normal tissues. In the present study, we investigated the potential pro-lymphangiogenesis effects of extra domain A (EDA)-mediated vascular endothelial growth factor-C (VEGF-C) secretion in colorectal carcinoma (CRC). We detected the expressions of EDA and VEGF-C in 52 human colorectal tumor tissues and their surrounding mucosae by immunohistochemical analysis, and further tested the correlation between the expressions of these two proteins in aforementioned CRC tissues. Both EDA and VEGF-C were abundantly expressed in the specimens of human CRC tissues. And VEGF-C was associated with increased expression of EDA in human CRC according to linear regression analysis. Besides, EDA expression was significantly correlated with lymph node metastasis, tumor differentiation and clinical stage by clinicopathological analysis of tissue microarrays containing tumor tissues of 115 CRC patients. Then, human CRC cell SW480 was transfected with lentivectors to elicit expression of shRNA against EDA (shRNA-EDA), and SW620 was transfected with a lentiviral vector to overexpress EDA (pGC-FU-EDA), respectively. We confirmed that VEGF-C was upregulated in EDA-overexpressed cells, and downregulated in shRNA-EDA cells. Moreover, a PI3K-dependent signaling pathway was found to be involved in EDA-mediated VEGF-C secretion. The in vivo result demonstrated that EDA could promote tumor growth and tumor-induced lymphangiogenesis in mouse xenograft models. Our findings provide evidence that EDA could play a role in tumor-induced lymphangiogenesis via upregulating autocrine secretion of VEGF-C in colorectal cancer, which is associated with the PI3K/Akt-dependent pathway

    High Expression of Testes-Specific Protease 50 Is Associated with Poor Prognosis in Colorectal Carcinoma

    Get PDF
    Testes-specific protease 50 (TSP50) is normally expressed in testes and abnormally expressed in breast cancer, but whether TSP50 is expressed in colorectal carcinoma (CRC) and its clinical significance is unclear. We aimed to detect TSP50 expression in CRC, correlate it with clinicopathological factors, and assess its potential diagnostic and prognostic value.β€Š=β€Š0.009).Our data demonstrate that TSP50 is a potential effective indicator of poor survival for CRC patients, especially for those with early-stage tumors

    Orthotopic xenografts derived from transfected cells and control cells.

    No full text
    <p>Seven to 8 wk old male BALB/c nude mice were orthotopically implanted with 6 groups of tumor xenografts. (A) Representative images of xenografts. Orthotopic images of xenograft tumors derived from 6 groups of transfected cells and control cells. Scale barβ€Š=β€Š5 mm. (B) Expression of LYVE-1 was used to count LMVD in xenografts by immunohistochemical staining. The distribution of lymph vessels was stained brown under the light microscope. Scale bar β€Š=β€Š50 Β΅m. (C) Quantification of lymph microvessel density (LMVD) is shown. The results shown are the average of three experiments. ** p < 0.01, as compared with control group. The values are displayed as the mean Β± SEM.</p

    Relationship between clinicopathological parameters of colon cancer cases and expression of EDA.

    No full text
    <p>Relationship between clinicopathological parameters of colon cancer cases and expression of EDA.</p
    corecore