103 research outputs found

    Identification of a Novel Gene for Biosynthesis of a Bacteroid-Specific Electron Carrier Menaquinone

    Get PDF
    Ubiquinone (UQ) has been considered as an electron mediator in electron transfer that generates ATP in Rhizobium under both free-living and symbiosis conditions. When mutated, the dmtH gene has a symbiotic phenotype of forming ineffective nodules on Astragalus sinicus. The gene was isolated from a Mesorhizobium huakuii 7653R transposon-inserted mutant library. The DNA sequence and conserved protein domain analyses revealed that dmtH encodes demethylmenaquinone (DMK) methyltransferase, which catalyzes the terminal step of menaquinone (MK) biosynthesis. Comparative analysis indicated that dmtH homologs were present in only a few Rhizobia. Real-time quantitative PCR showed dmtH is a bacteroid-specific gene. The highest expression was seen at 25 days after inoculation of strain 7653R. Gene disruption and complementation tests demonstrated that the dmtH gene was essential for bacteroid development and symbiotic nitrogen fixation ability. MK and UQ were extracted from the wild type strain 7653R and mutant strain HK116. MK-7 was accumulated under microaerobic condition and UQ-10 was accumulated under aerobic condition in M. huakuii 7653R. The predicted function of DmtH protein was confirmed by the measurement of methyltransferase activity in vitro. These results revealed that MK-7 was used as an electron carrier instead of UQ in M. huakuii 7653R bacteroids

    Genome-wide identification of cystathionine beta synthase genes in wheat and its relationship with anther male sterility under heat stress

    Get PDF
    Cystathionine beta synthase (CBS) domains containing proteins (CDCPs) plays an important role in plant development through regulation of the thioredoxin system, as well as its ability to respond to biotic and abiotic stress conditions. Despite this, no systematic study has examined the wheat CBS gene family and its relation to high temperature-induced male sterility. In this study, 66 CBS family members were identified in the wheat genome, and their gene or protein sequences were used for subsequent analysis. The TaCBS gene family was found to be unevenly distributed on 21 chromosomes, and they were classified into four subgroups according to their gene structure and phylogeny. The results of collinearity analysis showed that there were 25 shared orthologous genes between wheat, rice and Brachypodium distachyon, and one shared orthologous gene between wheat, millet and barley. The cis-regulatory elements of the TaCBS were related to JA, IAA, MYB, etc. GO and KEGG pathway analysis identified these TaCBS genes to be associated with pollination, reproduction, and signaling and cellular processes, respectively. A heatmap of wheat plants based on transcriptome data showed that TaCBS genes were expressed to a higher extent in spikelets relative to other tissues. In addition, 29 putative tae-miRNAs were identified, targeting 41 TaCBS genes. Moreover, qRT-PCR validation of six TaCBS genes indicated their critical role in anther development, as five of them were expressed at lower levels in heat-stressed male sterile anthers than in Normal anthers. Together with anther phenotypes, paraffin sections, starch potassium iodide staining, and qRT-PCR data, we hypothesized that the TaCBS gene has a very important connection with the heat-stressed sterility process in wheat, and these data provide a basis for further insight into their relationship

    Whole-Genome Sequencing Of Mesorhizobium huakuii 7653R Provides Molecular Insights into Host Specificity and Symbiosis Island Dynamics

    Get PDF
    Background Evidence based on genomic sequences is urgently needed to confirm the phylogenetic relationship between Mesorhizobium strain MAFF303099 and M. huakuii. To define underlying causes for the rather striking difference in host specificity between M. huakuii strain 7653R and MAFF303099, several probable determinants also require comparison at the genomic level. An improved understanding of mobile genetic elements that can be integrated into the main chromosomes of Mesorhizobium to form genomic islands would enrich our knowledge of how genome dynamics may contribute to Mesorhizobium evolution in general. Results In this study, we sequenced the complete genome of 7653R and compared it with five other Mesorhizobium genomes. Genomes of 7653R and MAFF303099 were found to share a large set of orthologs and, most importantly, a conserved chromosomal backbone and even larger perfectly conserved synteny blocks. We also identified candidate molecular differences responsible for the different host specificities of these two strains. Finally, we reconstructed an ancestral Mesorhizobium genomic island that has evolved into diverse forms in different Mesorhizobium species. Conclusions Our ortholog and synteny analyses firmly establish MAFF303099 as a strain of M. huakuii. Differences in nodulation factors and secretion systems T3SS, T4SS, and T6SS may be responsible for the unique host specificities of 7653R and MAFF303099 strains. The plasmids of 7653R may have arisen by excision of the original genomic island from the 7653R chromosome

    Seasonal expressions of prolactin, prolactin receptor and STAT5 in the scented glands of the male muskrats (Ondatra zibethicus)

    Get PDF
    Prolactin (PRL) production in mammals has been demonstrated in extrapituitary gland, which can activate autocrine/paracrine signaling pathways to regulate physiological activity. In the current study, we characterized the gene expression profiles of PRL, prolactin receptor (PRLR) and signal transducers and activators of transcription 5 (STAT5) in the scented glandular tissues of the muskrats, to further elucidate the relationship between PRL and the scented glandular functions of the muskrats. The weight and volume of the scented glands in the breeding season were significantly higher than those of the non-breeding season. Immunohistochemical data showed that PRL, PRLR and STAT5/phospho-STAT5 (pSTAT5) were found in the glandular and epithelial cells of the scented glands in both seasons. Furthermore, we found that PRL, PRLR and STAT5 had higher immunoreactivities in the scented glands during the breeding season when compared to those of the non-breeding season. In parallel, the gene expressions of PRL, PRLR and STAT5 were significantly higher in the scented glands during the breeding season than those of the non-breeding season. The concentrations of PRL in scented glandular tissues and sera were measured by enzyme-linked immunosorbent assay (ELISA), and their levels were both notably higher in the breeding season than those of the non-breeding season. These findings suggested that the scented glands of the muskrats were capable of extrapituitary synthesis of PRL, which might attribute PRL a specific function to an endocrine or autocrine/paracrine mediator

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Optical rotational self-assembly at air-water surface by a single vortex beam

    No full text
    Self-assembly and relevant quantitative measurements of 4 um polystyrene microspheres at air-water surface were realized by utilizing optical tweezers with a low-numerical-aperture (NA) and long-working-distance (WD) microscope objective. It showed that the rotation velocity of a single microsphere varies with a nearly linear dependence on incident laser power with the existence of surface tension at air-water interface. The self-assembly experiments show that the rotation velocity of the bridging particle chain increases clearly as the particle number increases. This work would contribute to the related researches of micro granular structure fabrication and bio-printing of cell tissues. Keywords: Optical rotation dynamics, Optical tweezers, Self-assembly, Orbital angular momentu

    Detail Analysis for Energy Transfer and Pigment Assembling in C−Phycocyanin through Time−Resolved Spectroscopy and AlphaFold2

    No full text
    The time-resolved fluorescence spectroscopy of the C−phycocyanin (C−PC) complex from the cyanobacterium Spirulina platensis (S. platensis) hexamer with the sub-picosecond resolution was detected, and the energy transfer pathways and related transfer rates were identified through the multiexponential analysis based on Monte-Carlo method. With the purpose to construct the relationship between the functions and the structure in vivo, the three−dimension (3D) protein structure was predicted via AlphaFold2, and the arrangement of chromophores treated as the energy transfer nodes were obtained. The experiment results have been matched well with the structure prediction. This work suggests a new way to investigate structure prediction in vivo and the corresponding functions

    Time-Resolved Fluorescence Spectroscopy Study of Energy Transfer Dynamics in Phycobilisomes of the Thermophilic Cyanobacterium Thermosynechococcus vulcanus NIES 2134

    No full text
    Phycobilisomes (PBSs) are the largest light-harvesting complexes in cyanobacteria and red algae. To understand the energy transfer dynamics in PBSs, the cyanobacterium Thermosynechococcus vulcanus NIES 2134 (T 2134), with a phycocyanin (PC) trimer PC612 linking the rod and core, was selected. The energy transfer dynamics were studied via time-resolved fluorescence spectroscopy with sub-picosecond resolution. The energy transfer pathways and transfer rates were uncovered by deconvolution of the fluorescence decay curve. A fast time-component of 10 ps from PC612 trimer to the core and a slow time-component of 80 ps from rods to the core were recognized in the energy transfer. The faster energy transfer rate of 10 ps enables PC612 trimer to modulate the energy transfer dynamics between rods and core. The findings help us understand the structure-induced energy transfer mechanisms in PBSs
    • …
    corecore