40 research outputs found

    Food emergency dispatching method based on optimized fireworks algorithm

    Get PDF
    In order to solve the problem of food emergency dispatching under emergencies, a food emergency dispatching method based on the optimal fireworks algorithm was proposed. The fitness function was used to measure the individual merits of fireworks, the tabu table was set to avoid the fireworks algorithm falling into the local optimal, and the tournament strategy was adopted as the iterative strategy of fireworks population. The goal of the fitness function is to maximize the satisfaction of demand points and minimize the vehicle travel time.In order to accurately predict the amount of food required at the point of demand, an infectious disease model (SEIR) was used.By comparing with the basic fireworks algorithm and genetic algorithm, the simulation results show that the proposed algorithm has higher computational efficiency and can be used in food emergency dispatching

    Acoustic Vortex in Waveguide with Chiral Gradient Sawtooth Metasurface

    Full text link
    The acoustic vortex states with spiral phase dislocation that can carry orbital angular moment (OAM) have aroused many research interests in recent years. The mainstream methods of generating acoustic vortex are based on Huygens-Fresnel principle to modulate the wavefront to create spatial spiral phase dislocation. In this work, we propose an entirely new scenario to generate acoustic vortex in a waveguide with chiral gradient sawtooth metasurface. The physical mechanism of our method is to lift the degenerate dipole eigenmodes through the scattering effect of the chiral surface structure, and then the superposition of them will generate both and order vortices in place. Compared to the existing methods of acoustic vortex production, our design has many merits, such as easy to manufacture and control, the working frequency is broadband, sign of vortex order can be readily flipped. Both the full-wave simulations and experimental measurements validate the existence of the acoustic vortices. The torque effect of the acoustic vortices is also successfully performed by rotating a foam disk as a practical application. Our work opens up a new route for generating acoustic vortex and could have potential significances in microfluidics, acoustic tweezers and ultrasonic communication, etc

    Hydrogenated vacancies lock dislocations in aluminium

    Get PDF
    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~10³s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment

    Habitat quality assessment and multi-scenario prediction of the Gansu-Qinghai section of the Yellow River Basin based on the FLUS-InVEST model

    Get PDF
    Research on the impact of land use change on regional habitat quality, in various future scenarios, can effectively aid planning and decision-making for sustainable development at a regional level. The study conducted its research in the Gansu-Qinghai Yellow River section and used ArcGIS and a land use transfer matrix to analyze the spatiotemporal pattern of land use and land cover changes. The study assessed the changes in habitat quality in the Gansu-Qinghai Yellow River region between 1990 and 2020, using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model, by evaluating the gains and losses. Simultaneously, 15 elements of the natural economy were chosen and examined for their temporal and spatial impact on habitat quality using the random forest model and spatially weighted regression model. To forecast land use changes in the Gansu-Qinghai Yellow River section for 2030, the Future Land Use Simulation Model (FLUS) model was utilized and a series of four scenarios (cultivated land protection scenario, ecological protection scenario, natural development scenario, and rapid development scenario) were employed. The research results indicate that over 70% of the Gansu-Qinghai Yellow River is occupied by grasslands, and only a small portion of the area, about 0.22%, is developed for construction purposes. The quality of the habitat in the Gansu-Qinghai Yellow River had a minor drop between 1990 and 2020, followed by an improvement. Habitat quality changes are primarily attributed to improvements, with variations across different areas, i.e., enhanced in the east and reduced in the central and western parts. The habitat quality of the Gansu-Qinghai Yellow River has improved in all four scenarios compared to 2020, as evidenced by the decrease in low-value habitats and increase in high-value areas. The ecological protection scenario has the highest average habitat quality value. These research results can be used to support policy development and ecological restoration initiatives in the Gansu-Qinghai Yellow River

    Analysis and optimization of a novel linear permanent Vernier motor

    No full text
    In this paper, a novel linear permanent magnet vernier (LPMV) motor is proposed. The advantages of the proposed motor are high force density, high efficiency, simple structure, and low cost. Firstly, the structure and the operation principle of the proposed motor which adopts 12-slots-11-pair-poles structure are descried. Based on the air-gap permeance function, the components of air-gap flux density is discussed. Secondly, the validation of LPMV is analyzed by finite element method (FEM), and the basic electromagnetic performance such as air-gap flux density, back-EMF, detent force and thrust waveform are analyzed in detail. Finally, the relationship between the thrust force characteristics and the design parameters are analyzed to provide useful information to the designers of LPMV

    Chromosomal microarray analysis for prenatal diagnosis of uniparental disomy: a retrospective study

    No full text
    Abstract Background Chromosomal microarray analysis (CMA) is a valuable tool in prenatal diagnosis for the detection of chromosome uniparental disomy (UPD). This retrospective study examines fetuses undergoing invasive prenatal diagnosis through Affymetrix CytoScan 750 K array analysis. We evaluated both chromosome G-banding karyotyping data and CMA results from 2007 cases subjected to amniocentesis. Results The detection rate of regions of homozygosity (ROH) ≥ 10 Mb was 1.8% (33/2007), with chromosome 11 being the most frequently implicated (17.1%, 6/33). There were three cases where UPD predicted an abnormal phenotype based on imprinted gene expression. Conclusion The integration of UPD detection by CMA offers a more precise approach to prenatal genetic diagnosis. CMA proves effective in identifying ROH and preventing the birth of children affected by imprinting diseases

    Performance Improvement of GaN Based Laser Diode Using Pd/Ni/Au Metallization Ohmic Contact

    No full text
    We report an investigation of the effects of different metal systems and surface treatment on the contact performance of GaN lasers. We found that multi-element metal alloy and surface chemical treatment are the keys to achieve good ohmic behavior contacts on GaN laser diodes. Pd/Ni/Au contact demonstrates excellent thermal stability and lowest specific contact resistivity in these metal systems. Properly adjusting the thickness of the Pd and Ni layer and pretreating with the KOH solution can further improve the ohmic contact performance. The improved ohmic behavior of the KOH solution pretreated Pd/Ni/Au contact is attributed to removing surface oxides and the reduction of the schottky barrier heights due to the metal Pd has a high work function and the interfacial reactions occurring between the Pd, Ni, Au, and GaN extends into the GaN film. As a result, a low contact resistivity of 1.66 × 10−5 Ω·cm2 can be achieved from Pd(10 nm)/Ni(10 nm)/Au(30 nm) contacts with KOH solution pretreated on top of the laser diode structure. The power of the GaN based laser diode with the Pd/Ni/Au metallization ohmic contact can be enhanced by 1.95 times and the threshold current decreased by 37% compared to that of the conventional ohmic contact Ni/Au
    corecore