43 research outputs found

    Bis(5-chloro­salicylato-κO)bis­(1,10-phenanthroline-κ2 N,N′)cadmium(II)

    Get PDF
    In the title complex, [Cd(C7H4ClO3)2(C12H8N2)2], the Cd atom is coordinated by two 5-chloro­salicylate ligands and two 1,10-phenanthroline ligands, displaying a distorted octa­hedral coordination geometry. The crystal structure is stabilized by O—H⋯O and C—H⋯O hydrogen bonds and π–π inter­actions between the 1,10-phenanthroline ligands and 5-chloro­salicylate ligands, with a centroid–centroid distance between neighbouring aromatic rings of 3.730 (1) Å

    Identification of Phosphorus Stress Related Proteins in the Seedlings of Dongxiang Wild Rice (Oryza Rufipogon Griff.) Using Label-Free Quantitative Proteomic Analysis

    No full text
    Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR

    Neutron-Diffraction and Mössbauer-Effect Studies of Pr₂(Fe₁₋ₓMnₓ)₁₄B

    No full text
    A neutron-diffraction investigation of a series of Pr2(Fe 1-xMnx)14B samples, with x values of 0.00, 0.11, 0.22, 0.30, and 0.35, reveals a preference for the manganese to occupy the 8j2 transition-metal site,the transition-metal site with the largest Wigner-Seitz cell volume. Similar site occupancies have been reported previously for Er2(Fe1-xMnx) 14B and Y2(Fe1-xMnx) 14B. An analysis of the 295-K Mössbauer spectrum of Pr2(Fe0.89Mn0.11)14B indicates that the internal hyperfine fields on the six iron sites are more substantially reduced from those found in Pr2Fe1 4B than would be expected from a simple magnetic dilution with manganese. The extent of the field reduction for a specific site increases with the number of manganese near neighbors for the site. Fits of the Mössbauer spectra of Pr2(Fe0.78Mn0.22)1 4B, Pr2(Fe0.70Mn0.30) 14B, and Pr2(Fe0.65Mn 0.35)14B, which are paramagnetic at room temperature, give quadrupole splittings consistent with the quadrupole interactions in Pr2Fe14B

    Mössbauer and Neutron Diffraction Studies of Y₂(Fe₁₋ₓMnₓ)₁₄B

    No full text
    We have used Mössbauer spectroscopy and neutron diffraction to study a series of Y2(Fe1-xMnx)1 4B samples in the composition range from x=0.0 to 0.4. Y 2(Fe0.6Mn0.4)14B is paramagnetic at both room temperature and 85 K. The iron quadrupole splitting in this paramagnetic compound allows us to place an upper limit on the quadrupole shift in the magnetic Y2(Fe1-xMnx) 14B alloys. Refinement of Y2(Fe 1-xMnx)14B neutron diffraction data have been used to give the site occupancies of manganese on the transition-metal sublattice. Both neutron diffraction patterns and Mössbauer effect spectra indicate a marked preference for the manganese to occupy the 8j2 site, which is the largest volume transition-metal site. Both experimental techniques give completely consistent results for the site occupancies in Y 2(Fe1-xMnx)14B

    Protective Effects of Dietary Supplementation with a Combination of Nutrients in a Transgenic Mouse Model of Alzheimer's Disease.

    No full text
    This study investigated the effects of intervention with a combination of nutrients in the amyloid precursor protein-presenilin (APP-PSN) C57BL/6J double transgenic mouse model of Alzheimer's disease (AD).A total of 72 2-month-old APP-PSN mice were randomly assigned to three groups. The model group (MG) was fed regular, unsupplemented chow, while the low- and high-dose treatment groups (LG and HG, respectively) were given a combination of nutrients that included phosphatidylserine, blueberry extracts, docosahexaenoic acid, and eicosapentaenoic acid as part of their diet. An additional 24 wild-type littermates that were fed unsupplemented chow served as the negative control group (NG). After 3 and 7 months of treatment, the cognitive performance was assessed with the Morris water maze and the shuttle box escape/avoidance task, and the biochemical parameters and oxidative stress were evaluated in both the blood and brain.An improvement in antioxidant capacity was observed in the treatment groups relative to the MG at 3 months, while superior behavioral test results were observed in the mice of the HG and NG groups. In the MG, pycnosis was detected in neuronal nuclei, and a loss of neurons was observed in the cerebral cortex and the hippocampus. At 7 months, the β-amyloid1-42 peptide accumulation was significantly elevated in the MG but was markedly lower in the mice fed the nutrient combination. The antioxidant capacity and behavioral test scores were also higher in these mice.Early intervention with a combination of nutrients should be considered as a strategy for preventing cognitive decline and other symptoms associated with AD

    Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells

    No full text
    We present a facile electrochemical method for synthesizing uniform sized graphene quantum dots (GQDs) with a strong yellow emission at 14% quantum yield. This approach has enabled a large-scale production of aqueous GQD solution without the need for polymeric or surfactant stabilizers. The structure and emission mechanism of the GQDs have been studied by combining extensive characterization techniques, rigorous control experiments and theoretical calculations. We further demonstrate the distinctive advantages of such GQDs for direct and efficient stem cell labeling, opening up great opportunities for their bio-medical applications
    corecore