92 research outputs found

    The Effect of the Crosstalk between Photoperiod and Temperature on the Heading-Date in Rice

    Get PDF
    Photoperiod and temperature are two important environmental factors that influence the heading-date of rice. Although the influence of the photoperiod on heading has been extensively reported in rice, the molecular mechanism for the temperature control of heading remains unknown. This study reports an early heading mutant derived from tissue culture lines of rice and investigates the heading-date of wild type and mutant in different photoperiod and temperature treatments. The linkage analysis showed that the mutant phenotype cosegregated with the Hd1 locus. Sequencing analysis found that the mutant contained two insertions and several single-base substitutions that caused a dramatic reduction in Hd1mRNA levels compared with wild type. The expression patterns of Hd1 and Hd3a were also analyzed in different photoperiod and temperature conditions, revealing that Hd1 mRNA levels displayed similar expression patterns for different photoperiod and temperature treatments, with high expression levels at night and reduced levels in the daytime. In addition, Hd1 displayed a slightly higher expression level under long-day and low temperature conditions. Hd3a mRNA was present at a very low level under low temperature conditions regardless of the day-length. This result suggests that suppression of Hd3a expression is a principle cause of late heading under low temperature and long-day conditions

    Low-loss chip-scale programmable silicon photonic processor

    Get PDF
    Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications, such as lidar, radar, and artificial intelligence. Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility, and thus makes it possible to develop large-scale programmable optical signal processors. The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors. In this paper, we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches. The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers (MZCs), four Ge/Si photodetectors, four channels of thermally-tunable optical delaylines. Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step. Particularly, these waveguide spirals used here are designed to be as wide as 2 µm, enabling an ultralow propagation loss of 0.28 dB/cm. Meanwhile, these MZCs and MZSs are designed with 2-µm-wide arm waveguides, and thus the random phase errors in the MZC/MZS arms are negligible, in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly. Finally, this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities, including tunable time-delay, microwave photonic beamforming, arbitrary optical signal filtering, and arbitrary waveform generation

    The COP9 Signalosome Interacts Physically with SCF COI1

    Full text link

    The SCF COI1

    Full text link

    Gibberellin Acts through Jasmonate to Control the Expression of MYB21, MYB24, and MYB57 to Promote Stamen Filament Growth in Arabidopsis

    Get PDF
    Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis

    Design Rule of Mach-Zehnder Interferometer Sensors for Ultra-High Sensitivity

    No full text
    A design rule for a Mach-Zehnder interferometer (MZI) sensor is presented, allowing tunable sensitivity by appropriately choosing the MZI arm lengths according to the formula given in this paper. The present MZI sensor designed by this method can achieve an ultra-high sensitivity, which is much higher than any other traditional MZI sensors. An example is given with silicon-on-insulator (SOI) nanowires and the device sensitivity is as high as 106 nm/refractive-index -unit (or even higher), by choosing the MZI arms appropriately. This makes it possible for one to realize a low-cost optical sensing system with a detection limit as high as 10−6 refractive-index-unit, even when a cheap optical spectrum analyzer with low-resolution (e.g., 1 nm) is used for the wavelength-shift measurement

    VA-TIRFM-based SM kymograph analysis for dwell time and colocalization of plasma membrane protein in plant cells

    No full text
    Abstract Background The plasma membrane (PM) proteins function in a highly dynamic state, including protein trafficking and protein homeostasis, to regulate various biological processes. The dwell time and colocalization of PM proteins are considered to be two important dynamic features determining endocytosis and protein interactions, respectively. Dwell-time and colocalization detected using traditional fluorescence microscope techniques are often misestimated due to bulk measurement. In particular, analyzing these two features of PM proteins at the single-molecule level with spatiotemporal continuity in plant cells remains greatly challenging. Results We developed a single molecular (SM) kymograph method, which is based on variable angle-total internal reflection fluorescence microscopy (VA-TIRFM) observation and single-particle (co-)tracking (SPT) analysis, to accurately analyze the dwell time and colocalization of PM proteins in a spatial and temporal manner. Furthermore, we selected two PM proteins with distinct dynamic behaviors, including AtRGS1 (Arabidopsis regulator of G protein signaling 1) and AtREM1.3 (Arabidopsis remorin 1.3), to analyze their dwell time and colocalization upon jasmonate (JA) treatment by SM kymography. First, we established new 3D (2D+t) images to view all trajectories of the interest protein by rotating these images, and then we chose the appropriate point without changing the trajectory for further analysis. Upon JA treatment, the path lines of AtRGS1-YFP appeared curved and short, while the horizontal lines of mCherry-AtREM1.3 demonstrated limited changes, indicating that JA might initiate the endocytosis of AtRGS1. Analysis of transgenic seedlings coexpressing AtRGS1-YFP/mCherry-AtREM1.3 revealed that JA induces a change in the trajectory of AtRGS1-YFP, which then merges into the kymography line of mCherry-AtREM1.3, implying that JA increases the colocalization degree between AtRGS1 and AtREM1.3 on the PM. These results illustrate that different types of PM proteins exhibit specific dynamic features in line with their corresponding functions. Conclusions The SM-kymograph method provides new insight into quantitively analyzing the dwell time and correlation degree of PM proteins at the single-molecule level in living plant cells
    • …
    corecore