131 research outputs found
A dual-analytes responsive fluorescent probe for discriminative detection of ClO− and N2H4 in living cells
Hydrazine (N2H4) and ClO− are very harmful for public health, hence it is important and necessary to monitor
them in living cells. Herein, we rationally designed and synthesized a dual-analytes responsive fluorescent sensor
PTMQ for distinguishing detection of N2H4 and ClO−. PTMQ underwent N2H4-induced double bond cleavage,
affording colorimetric and green fluorescence enhancement with good selectivity and a low detection limit (89
nM). On the other hand, PTMQ underwent ClO−-induced sulfur oxidation and displayed red fluorescence
lighting-up response towards ClO− with good selectivity, rapid response (<0.2 min) and a low detection limit
(58 nM). Moreover, PTMQ was successfully employed for in-situ imaging of N2H4 and ClO− in living cellsinfo:eu-repo/semantics/publishedVersio
Research progress on geosynchronous synthetic aperture radar
Based on its ability to obtain two-dimensional (2D) high-resolution images in all-time and all-weather conditions, spaceborne synthetic aperture radar (SAR) has become an important remote sensing technique and the study of such systems has entered a period of vigorous development. Advanced imaging modes such as radar interferometry, tomography, and multi-static imaging, have been demonstrated. However, current in-orbit spaceborne SARs, which all operate in low Earth orbits, have relatively long revisit times ranging from several days to dozens of days, restricting their temporal sampling rate. Geosynchronous SAR (GEO SAR) is an active research area because it provides significant new capability, especially its much-improved temporal sampling. This paper reviews the research progress of GEO SAR technologies in detail. Two typical orbit schemes are presented, followed by the corresponding key issues, including system design, echo focusing, main disturbance factors, repeat-track interferometry, etc, inherent to these schemes. Both analysis and solution research of the above key issues are described. GEO SAR concepts involving multiple platforms are described, including the GEO SAR constellation, GEO-LEO/airborne/unmanned aerial vehicle bistatic SAR, and formation flying GEO SAR (FF-GEO SAR). Due to the high potential of FF-GEO SAR for three-dimensional (3D) deformation retrieval and coherence-based SAR tomography (TomoSAR), we have recently carried out some research related to FF-GEO SAR. This research, which is also discussed in this paper, includes developing a formation design method and an improved TomoSAR processing algorithm. It is found that GEO SAR will continue to be an active topic in the aspect of data processing and multi-platform concept in the near future
Mind the Propagation of States New Automatic Search Tool for Impossible Differentials and Impossible Polytopic Transitions (Full Version)
Impossible differentials cryptanalysis and impossible polytopic cryptanalysis are the most effective approaches to estimate the security of block ciphers. However, the previous automatic search methods of their distinguishers, impossible differentials and impossible polytopic transitions, neither consider the impact of key schedule in the single-key setting and the differential property of large S-boxes, nor apply to the block ciphers with variable rotations.
Thus, unlike previous methods which focus on the propagation of the difference or -difference, we redefine the impossible differentials and impossible -polytopic transitions according to the propagation of state, which allow us to break through those limitations of the previous methods. Theoretically, we prove that traditional impossible differentials and impossible -polytopic transitions are equivalent to part of our redefinitions, which have advantages from broader view. Technically, we renew the automatic search model and design an SAT-based tool to evaluate our redefined impossible differentials and impossible -polytopic transitions efficiently.
As a result, for GIFT64, we get the -round impossible differentials which cannot be detected by all previous tools. For PRINTcipher, we propose the first modeling method for the key-dependent permutation and key-dependent S-box. For MISTY1, we derive 902 4-round impossible differentials by exploiting the differential property of S-boxes. For RC5, we present the first modeling method for the variable rotation and get 2.5-round impossible differentials for each version of it. More remarkable, our tool can be used to evaluate the security of given cipher against the impossible differentials, and we prove that there exists no 5-round 1 input active word and 1 output active word impossible differentials for AES-128 even consider the relations of 3-round keys. Besides, we also get the impossible -polytopic transitions for PRINTcipher, GIFT64, PRESENT, and RC5, all of which can cover more rounds than their corresponding impossible differentials as far as we know
Evaluating the Security of Block Ciphers Against Zero-correlation Linear Attack in the Distinguishers Aspect
Zero-correlation linear attack is a powerful attack of block ciphers, the lower number of rounds (LNR) which no its distinguisher (named zero-correlation linear approximation, ZCLA) exists reflects the ability of a block cipher against the zero-correlation linear attack. However, due to the large search space, showing there are no ZCLAs exist for a given block cipher under a certain number of rounds is a very hard task. Thus, present works can only prove there no ZCLAs exist in a small search space, such as 1-bit/nibble/word input and output active ZCLAs, which still exist very large gaps to show no ZCLAs exist in the whole search space.
In this paper, we propose the meet-in-the-middle method and double-collision method to show there no ZCLAs exist in the whole search space. The basic ideas of those two methods are very simple, but they work very effectively. As a result, we apply those two methods to AES, Midori64, and ARIA, and show that there no ZCLAs exist for -round AES without the last Mix-Column layer, -round Midori64 without the last Mix-Column layer, and -round ARIA without the last linear layer.
As far as we know, our method is the first automatic method that can be used to show there no ZCLAs exist in the whole search space, which can provide sufficient evidence to show the security of a block cipher against the zero-correlation linear attack in the distinguishers aspect, this feature is very useful for designing block ciphers
Improving 2D resolution in geosynchronous SAR via spatial spectrum synthesis: method and verification
Geosynchronous synthetic aperture radar (GEO SAR) has the advantages of a short revisit time and a large beam footprint. Enhancing spatial resolution has become a hotspot in spaceborne SAR research areas. The existing designs of GEO SAR suffer from the problem of poor resolution (greater than 10 m) and cause low-precision observation in urban areas. First time, this article points out that GEO SAR has the ability to improve the two-dimensional (2-D) resolution of SAR images by spatial spectrum synthesis based on 2-D baselines, and proposes models and a signal processing method involved in GEO SAR spectrum synthesis. The 2-D spatial baselines of GEO SAR are analyzed and evaluated first based on satellite software and real ephemeris from Beidou Inclined Geosynchronous Orbit (IGSO) navigation satellites to demonstrate the potential of 2-D resolution improvement. Then the analytical models of the spectral shape and relative spectral shift between GEO SAR images are derived. Furthermore, a 2-D spectrum synthesis algorithm suitable for GEO SAR is also proposed, where we use deramping operation instead of the traditional spectrum shifting process. Nonideal factors are considered in the processing of synthesized. In addition, performances of the proposed algorithm, including the resolution improvement factor, the amplitude fluctuation, and the critical baseline, are constructed. Finally, computer simulations and equivalent experiments based on Beidou IGSO navigation satellites verify the proposed algorithm
Automatic Search Model for Related-Tweakey Impossible Differential Cryptanalysis
The design and analysis of dedicated tweakable block ciphers constitute a dynamic and relatively recent research field in symmetric cryptanalysis. The assessment of security in the related-tweakey model is of utmost importance owing to the existence of a public tweak. This paper proposes an automatic search model for identifying related-tweakey impossible differentials based on the propagation of states under specific constraints, which is inspired by the research of Hu et al. in ASIACRYPT 2020. Our model is universally applicable to block ciphers, but its search efficiency may be limited in some cases. To address this issue, we introduce the Locality Constraint Analysis (LCA) technique to impossible differential cryptanalysis and propose a generalized automatic search model. Technically, we transform our models into Satisfiability Modulo Theories (SMT) problems and solve them using the STP solver. We have applied our tools to several tweakable block ciphers, such as Joltik-BC, SKINNY, QARMA, and CRAFT, to evaluate their effectiveness and practicality. Specifically, we have discovered 7-round related-tweakey impossible differentials for Joltik-BC-192, and 12-round related-tweak impossible differentials, as well as 15-round related-tweakey impossible differentials for CRAFT for the first time. Based on the search results, we demonstrate that the LCA technique can be effectively performed when searching and determining the contradictory positions for the distinguisher with long trails or ciphers with large sizes in impossible differential cryptanalysis
A Deep Study of The Impossible Boomerang Distinguishers: New Construction Theory and Automatic Search Methods
The impossible boomerang attack (IBA) is a combination of the impossible differential attack and boomerang attack, which has demonstrated remarkable power in the security evaluation of AES and other block ciphers. However, this method has not received sufficient attention in the field of symmetric cipher analysis. The only existing search method for impossible boomerang distinguishers (IBD), the core of IBAs, is the , but it is considered rather rudimentary given current technological advancements and may result in missed opportunities for effective attacks. Therefore, this paper delves into a comprehensive study on the construction theory and automatic search method of IBDs.
Theoretically, we propose 5 IBD constructions aligned with the techniques of arbitrary S-box, boomerang distinguisher, Boomerang Connectivity Table, U/L/EBCT and mixed tables for differential propagation for SPN-network block ciphers, and 2 IBD constructions accompanied by state propagation for block ciphers with any structure. Furthermore, we investigate the relationship among these IBD constructions and demonstrate that the most superior IBD aligns precisely with the original definition. Technically, we develop a general SAT-based automatic search tool for IBDs by introducing optimized search strategies of the composite model method and the mixed model method. This tool not only considers the details of each operation but also takes into account the impact of key schedule in a single-key setting.
As applications, we first acquire 59584 4-round 1 active word truncated IBDs for AES-128, and 192 of those IBDs cannot be detected by the . For Midori64, we first demonstrate the non-existence of -round active word truncated IBDs, and obtain -round active word truncated IBDs, which is complementary to the finding that there are no existing -round active word truncated IDs. For PRESENT-80, we get the first 6-round IBDs which cannot be detected by the . Those results indicate that our method outperforms the and offer an advantage over IDs. We believe that our work can bring new insights to symmetric cipher analysis
Disaster mechanism and its deposition area of the Xiaochang gully debris flow in Hanyuan County industrial park
Influenced by the 2013“4•20” Lushan earthquake, geological disasters occurred frequently along the Baiyan River Basin in Hanyuan County. At present, there is a large amount of loose material sources in the Xiaochang gully, posing a significant risk of large-scale debris flows, which severely threaten the factories and mining enterprises in the Hanyuan Industrial Park plant. Therefore, understanding the mechanism of disaster occurrence and its hazard is of great significance for future debris flow prediction, early warning, and prevention engineering design. Combining field investigation, UAV aerial photography, remote sensing interpretation, and RAMMS, this study analyzes the development characteristics of debris flows in Xiaochang gully, simulates the process of debris flow movement and accumulation, and reveals the disaster mechanism of disaster occurrence. The results show that the current dynamic storage of the source in Xiaochang gully reaches 370,000 m3. A wide and gentle channel ( 900 m long, and average width of 60 m ) has naturally formed in the middle reaches of the basin, acting as a natural sedimentation pond, which intercepts small-scale debris flows. Numerical simulation results show that when the rainfall frequency is less than once every 20 years, the main deposition of debris flows occurs in the middle and upper reaches of the gully, and will not directly threaten the industrial park; when the rainfall frequency reaches once every 50 years, the outbreak of large-scale debris flow will impact the industrial park
An in-situ method for assessing soil aggregate stability in burned landscapes
Due to soil repellency in burned areas, slope runoff and soil erodibility escalates following forest fires, increasing the vulnerability to post-fire debris flows. Soil aggregate stability is a critical determinant of soil infiltration capacity and erosion susceptibility. The prevalent method of assessing soil aggregate stability in burned areas, the counting the number of water drop impacts (CND) method, is time-intensive and impractical for in-situ measurements. In response, this study introduces a novel technique based on the shock and vibration damage (SVD) effect for evaluating soil aggregate stability in burned areas. Thirteen distinct soil aggregate types were meticulously prepared for indoor simulated fire testing, with due consideration to factors such as bulk weight, organic matter content, and water repellency, which influence stability of soil aggregates. Employing a custom-built test apparatus, the mass loss rate (MLR) of soil aggregates was determined through orthogonal experiments using the SVD method and compared against the standard CND technique's quantification of water droplet-induced aggregate destruction. The findings demonstrated that SVD method, employing Test Scheme 6 (testing 20 aggregates, 1-meter impact height, 40% water content, and five impacts), exhibits excellent agreement (Kendall coefficient = 0.797) and correlation (R2 = 0.634) with CND method outcomes. This testing scheme, characterized by rapid determination and effective discrimination, is identified as the optimal testing approach. The SVD testing apparatus is straightforward, portable, and easily disassembled, rendering it suitable for on-site use. It can be used to distinguish the stability level of soil aggregates swiftly and quantitatively under various fire intensities in burned areas in situ, which is an important guiding significance for the study of soil erosion, erosion control, and post-fire debris flow initiation mechanism in burned areas
- …