15 research outputs found

    Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database

    No full text
    The segmentation and classification of retinal arterioles and venules play an important role in the diagnosis of various eye diseases and systemic diseases. The major challenges include complicated vessel structure, inhomogeneous illumination, and large background variation across subjects. In this study, we employ a fully convolutional network to simultaneously segment arterioles and venules directly from the retinal image, rather than using a vessel segmentation-arteriovenous classification strategy as reported in most literature. To simultaneously segment retinal arterioles and venules, we configured the fully convolutional network to allow true color image as input and multiple labels as output. A domain-specific loss function was designed to improve the overall performance. The proposed method was assessed extensively on public data sets and compared with the state-of-the-art methods in literature. The sensitivity and specificity of overall vessel segmentation on DRIVE is 0.944 and 0.955 with a misclassification rate of 10.3% and 9.6% for arteriole and venule, respectively. The proposed method outperformed the state-of-the-art methods and avoided possible error-propagation as in the segmentation-classification strategy. The proposed method was further validated on a new database consisting of retinal images of different qualities and diseases. The proposed method holds great potential for the diagnostics and screening of various eye diseases and systemic diseases

    Harnessing the Potential of Non-Apoptotic Cell Death Processes in the Treatment of Drug-Resistant Melanoma

    No full text
    Melanoma is a highly malignant skin cancer that is known for its resistance to treatments. In recent years, there has been significant progress in the study of non-apoptotic cell death, such as pyroptosis, ferroptosis, necroptosis, and cuproptosis. This review provides an overview of the mechanisms and signaling pathways involved in non-apoptotic cell death in melanoma. This article explores the interplay between various forms of cell death, including pyroptosis, necroptosis, ferroptosis, and cuproptosis, as well as apoptosis and autophagy. Importantly, we discuss how these non-apoptotic cell deaths could be targeted as a promising therapeutic strategy for the treatment of drug-resistant melanoma. This review provides a comprehensive overview of non-apoptotic processes and gathers recent experimental evidence that will guide future research and eventually the creation of treatment strategies to combat drug resistance in melanoma

    Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database

    Get PDF
    \u3cp\u3eThe segmentation and classification of retinal arterioles and venules play an important role in the diagnosis of various eye diseases and systemic diseases. The major challenges include complicated vessel structure, inhomogeneous illumination, and large background variation across subjects. In this study, we employ a fully convolutional network to simultaneously segment arterioles and venules directly from the retinal image, rather than using a vessel segmentation-arteriovenous classification strategy as reported in most literature. To simultaneously segment retinal arterioles and venules, we configured the fully convolutional network to allow true color image as input and multiple labels as output. A domain-specific loss function was designed to improve the overall performance. The proposed method was assessed extensively on public data sets and compared with the state-of-the-art methods in literature. The sensitivity and specificity of overall vessel segmentation on DRIVE is 0.944 and 0.955 with a misclassification rate of 10.3% and 9.6% for arteriole and venule, respectively. The proposed method outperformed the state-of-the-art methods and avoided possible error-propagation as in the segmentation-classification strategy. The proposed method was further validated on a new database consisting of retinal images of different qualities and diseases. The proposed method holds great potential for the diagnostics and screening of various eye diseases and systemic diseases.\u3c/p\u3

    Analysis of the Humoral Immunal Response Transcriptome of Ectropis obliqua Infected by Beauveria bassiana

    No full text
    Ectropis obliqua is a destructive masticatory pest in China’s tea gardens. Beauveria bassiana as microbial insecticides can effectively control E. obliqua larvae; however, the immune response of this insect infected by B. bassiana are largely unknown. Here, after isolating a highly virulent strain of B. bassiana from E. obliqua, the changes in gene expression among different tissues, including hemocytes and fat bodies, of E. obliqua larvae infected by the entomopathogen were investigated using transcriptome sequencing. A total of 5877 co-expressed differentially expressed genes (DEGs) were identified in hemocytes and fat bodies, of which 5826 were up-regulated in hemocytes and 5784 were up-regulated in fat bodies. We identified 249 immunity-related genes, including pattern recognition receptors, immune effectors, signal modulators, and members of immune pathways. A quantitative real-time PCR analysis confirmed that several pattern recognition receptors were upregulated in hemocytes and fat bodies; however, others were downregulated. The investigated immune effectors (ATT and PPO-1) were suppressed. The results showed that there were tissue differences in the expression of immune genes. This study provides a large number of immunity-related gene sequences from E. obliqua after being infected by B. bassiana, furthering the understanding of the molecular mechanisms of E. obliqua defenses against B. bassiana

    Incomplete ileus and hemafecia as the presenting features of multi-organ involved primary systemic AL amyloidosis: a rare case report

    No full text
    Abstract Background AL Amyloidosis is known to be a systemic disease affecting multiple organs and tissue while it’s rare that patients present with gastrointestinal symptoms at first and later develop multiple-organ dysfuction. Clinical signs are not specific and the diagnosis is rarely given before performing immunofixation and endoscopy with multiple biopsies. We would like to emphasize the value of precise diagnostic process of AL amyloidosis. Case presentation In this case report, we describe a 56-year-old man who presented with recurrent periumbilical pain for 4 months and gradually worsened over a month. After a series of tests, he was finally diagnosed with primary systemic AL amyloidosis. He was treated with a chemotherapy regimen (Melphalan, dexamethasone and thalidomide) achieving a good clinical response. Conclusion On account of the high misdiagnosis rate, establishing the most precise diagnosis in first time with typing amyloidogenic protein becomes increasingly vital. Although the presenting feature is usually nonspecific, AL amyloidosis ought to be considered when multiple organs are involved in a short period

    Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration

    No full text
    Intervertebral disc (IVD) herniation is a major cause of chronic low back pain and disability. The current nucleus pulposus (NP) discectomy effectively relieves pain symptoms, but the annulus fibrosus (AF) defects are left unrepaired. Tissue engineering approaches show promise in treating AF injury and IVD degeneration; however, the presence of an inflammatory milieu at the injury site hinders the mitochondrial energy metabolism of AF cells, resulting in a lack of AF regeneration. In this study, we fabricated a dynamic self-healing hydrogel loaded with melatonin (an endocrine hormone well-known for its antioxidant and anti-inflammatory properties) and investigate whether melatonin-loaded hydrogel could promote AF defect repair by rescuing the matrix synthesis and energy metabolism of AF cells. The protective effects of melatonin on matrix components (e.g. type I and II collagen and aggrecan) in AF cells were observed in the presence of interleukin (IL)-1β. Additionally, melatonin was found to activate the nuclear factor erythroid 2-related factor signaling pathway, thereby safeguarding the mitochondrial function of AF cells from IL-1β, as evidenced by the increased level of adenosine triphosphate, mitochondrial membrane potential, and respiratory chain factor expression. The incorporation of melatonin into a self-healing hydrogel based on thiolated gelatin and β-cyclodextrin was proposed as a means of promoting AF regeneration. The successful implantation of melatonin-loaded hydrogel has been shown to facilitate in situ regeneration of AF tissue, thereby impeding IVD degeneration by preserving the hydration of nucleus pulposus in a rat box-cut IVD defect model. These findings offer compelling evidence that the development of a melatonin-loaded dynamic self-healing hydrogel can promote the mitochondrial functions of AF cells and represents a promising strategy for IVD regeneration

    MiR-200c is a cMyc-activated miRNA that Promotes Nasopharyngeal Carcinoma by Downregulating PTEN

    No full text
    The c-Myc transcription factor regulates a complex transcriptional program that leads to cellular transformation by targeting a large number of protein-encoding genes and non-coding RNAs. In this study, we show that a microRNA, miR-200c, is a novel c-Myc target that promotes cellular transformation and metastasis in nasopharyngeal carcinoma. MiR-200c achieves this oncogenic effect, at least in part, by targeting and inhibiting the tumor suppressor gene PTEN (phosphatase and tensin homolog), which is a key inhibitor of the AKT kinase signaling that promotes tumorigenesis in nasopharyngeal carcinoma. Our study thus identifies cMyc-miR-200c-PTEN-AKT as a functional module that promotes cellular transformation in nasopharyngeal carcinoma

    MiR-200c is a cMyc-activated miRNA that Promotes Nasopharyngeal Carcinoma by Downregulating PTEN

    No full text
    The c-Myc transcription factor regulates a complex transcriptional program that leads to cellular transformation by targeting a large number of protein-encoding genes and non-coding RNAs. In this study, we show that a microRNA, miR-200c, is a novel c-Myc target that promotes cellular transformation and metastasis in nasopharyngeal carcinoma. MiR-200c achieves this oncogenic effect, at least in part, by targeting and inhibiting the tumor suppressor gene PTEN (phosphatase and tensin homolog), which is a key inhibitor of the AKT kinase signaling that promotes tumorigenesis in nasopharyngeal carcinoma. Our study thus identifies cMyc-miR-200c-PTEN-AKT as a functional module that promotes cellular transformation in nasopharyngeal carcinoma

    Analysis and Improvement Strategies of the Phenomenon that What Biology Teachers Teach is not What They Learned in Rural Middle Schools

    No full text
    Rural education is a short board of China’s education. It is of great significance to strengthen the construction of the teacher team in rural middle schools for Rural Revitalization in the new era. The problem of structural shortage of teachers, reflected by the phenomenon of “what biology teachers teach is not what they learned” in rural middle schools, is a key issue that has been existing for a long time in the development of rural middle school education in our country. It is also a key problem that must be paid attention to and urgently solved in the face of the new situation, new tasks and new requirements. In response to this phenomenon that caused by the decline of students and the loss of biological teachers in rural middle schools, the government needs to play a supporting role and the school leaders of rural middle schools should innovate their systems and concepts. What’s more, biological teachers should reflect on their hearts and have the educational feelings of being willing to develop the countryside. Only when the government, middle school leaders and biology teachers have formed an educational synergy, can we better solve that harmful phenomenon and promote the healthy and rapid development of rural middle school education
    corecore