29 research outputs found

    In situ characterization of electrochemical processes of solid oxide fuel cells

    Get PDF
    Solid oxide fuel cells (SOFCs) represent a next generation energy source with high energy conversion efficiency, low pollutant emission, good flexibility with a wide variety of fuels, and excellent modularity suitable for distributed power generation. As an electrochemical energy conversion device, SOFC’s performance and reliability depend sensitively on the catalytic activity and stability of the electrode materials. To date, however, the development of electrode materials and microstructures is still based largely on trial-and-error methods because of inadequate understanding of the mechanisms of the electrode processes. Identifying key descriptors/properties of electrode materials or functional heterogeneous interfaces, especially under in situ conditions, may provide guidance to the design of electrode materials and microstructures. This thesis aims to gain insight into the electrochemical and catalytic processes occurring on the electrode surfaces using unique characterization tools with superior sensitivity, high spatial resolution, and excellent surface specificity applicable under in situ/operando conditions. Carbon deposition on nickel-based anodes is investigated with in situ Raman spectroscopy and SERS. Analysis shows a rapid nucleation of carbon deposition upon exposure to small amount of propane. Such nucleation process is sensitive to the presence of surface coating (e.g., GDC) and the concentration of steam. In particular, operando analysis of the Ni-YSZ boundary indicates special function of the interface for coking initiation and reformation. The coking-resistant catalysts (BaO, BZY, and BZCYYb) are systematically studied using in situ Raman spectroscopy, SERS, and EFM. In particular, time-resolved Raman analysis of the surface functional groups (-OH, -CO3, and adsorbed carbon) upon exposure to different gas atmospheres provides insight into the mechanisms related to carbon removal. The morphology and distribution of early stage carbon deposition are investigated with EFM, and the impact of BaO surface modification is evaluated. The surface species formed as a result of sulfur poisoning on nickel-based anode are examined with SERS. To identify the key factors responsible for sulfur tolerance, model cells with welldefined electrode-electrolyte interfaces are systematically studied. The Ni-BZCYYb interface exhibits superior sulfur tolerance. The oxygen reduction kinetics on LSCF, a typical cathode material of SOFC, is studied using model cells with patterned electrodes. The polarization behaviors of these micro- electrodes, as probed using a micro-probe impedance spectroscopy system, were correlated with the systematically varied geometries of the electrodes to identify the dominant paths for oxygen reduction under different electrode configurations. Effects of different catalyst modifications are also evaluated to gain insight into the mechanisms that enhance oxygen reduction activity. The causes of performance degradation of LSCF cathodes over long term operation are investigated using SERS. Spectral features are correlated with the formation of surface contamination upon the exposure to air containing Cr vapor, H2O, and CO2. Degradation in cathode performance occurs under normal operating conditions due to the poisoning effect of Cr from the interconnect between cells and the high operating temperature. The surface-modified LSCF cathode resists surface reactions with Cr vapor that impairs electrode performance, suggesting promising ways to mitigate performance degradation.Ph.D

    A nomogram for predicting survival in patients with gastrointestinal stromal tumor: a study based on the surveillance, epidemiology, and end results database

    Get PDF
    PurposeThe objective of this investigation was to construct and validate a nomogram for prognosticating cancer-specific survival (CSS) in patients afflicted with gastrointestinal stromal tumor (GIST) at 3-, 5-, and 8-years post-diagnosis.MethodsData pertaining to patients diagnosed with GIST were acquired from the Surveillance, Epidemiology, and End Results (SEER) database. Through random selection, a training cohort (70%) and a validation cohort (30%) were established from the patient population. Employing a backward stepwise Cox regression model, independent prognostic factors were identified. Subsequently, these factors were incorporated into the nomogram to forecast CSS rates at 3-, 5-, and 8-years following diagnosis. The nomogram’s performance was assessed using indicators such as the consistency index (C-index), the area under the time-dependent receiver operating characteristic curve (AUC), the net reclassification improvement (NRI), the integrated discrimination improvement (IDI), calibration curves, and decision-curve analysis (DCA).ResultsThis investigation encompassed a cohort of 3,062 GIST patients. By analyzing the Cox regression model within the training cohort, nine prognostic factors were identified: age, sex, race, marital status, AJCC (American Joint Committee on Cancer) stage, surgical status, chemotherapy status, radiation status, and income status. The nomogram was subsequently developed and subjected to both internal and external validation. The nomogram exhibited favorable discrimination abilities, as evidenced by notably high C-indices and AUC values. Calibration curves confirmed the nomogram’s reliability. Moreover, the nomogram outperformed the AJCC model, as demonstrated by enhanced NRI and IDI values. The DCA curves validated the clinical utility of the nomogram.ConclusionThe present study has successfully constructed and validated the initial nomogram for predicting prognosis in GIST patients. The nomogram’s performance and practicality suggest its potential utility in clinical settings. Nevertheless, further external validation is warranted

    Well-organized raspberry-like Ag@Cu bimetal nanoparticles for highly reliable and reproducible surface-enhanced Raman scattering

    Get PDF
    Surface-enhanced Raman scattering (SERS) is ideally suited for probing and mapping surface species and incipient phases on fuel cell electrodes because of its high sensitivity and surface-selectivity, potentially offering insights into the mechanisms of chemical and energy transformation processes. In particular, bimetal nanostructures of coinage metals (Au, Ag, and Cu) have attracted much attention as SERS-active agents due to their distinctive electromagnetic field enhancements originated from surface plasmon resonance. Here we report excellent SERS-active, raspberry-like nanostructures composed of a silver (Ag) nanoparticle core decorated with smaller copper (Cu) nanoparticles, which displayed enhanced and broadened UV-Vis absorption spectra. These unique Ag@Cu raspberry nanostructures enable us to use blue, green, and red light as the excitation laser source for surface-enhanced Raman spectroscopy (SERS) with a large enhancement factor (EF). A highly reliable SERS effect was demonstrated using Rhodamine 6G (R6G) molecules and a thin film of gadolinium doped ceria.close3

    High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials

    Get PDF
    In situ probing of surface species and incipient phases is vital to unraveling the mechanisms of chemical and energy transformation processes. Here we report Ag nanoparticles coated with a thin-film SiO2 shell that demonstrate excellent thermal robustness and chemical stability for surface enhanced Raman spectroscopy (SERS) study of solid oxide fuel cell materials under in situ conditions (at ???400 ??C).close3

    Identification of the prognostic biomarkers and their correlations with immune infiltration in colorectal cancer through bioinformatics analysis and in vitro experiments

    No full text
    Colorectal cancer (CRC) is the third most diagnosed malignancy and the second leading cause of cancer death. The objective was to identify novel hub genes that were helpful for prognosis and targeted therapy in CRC. GSE23878, GSE24514, GSE41657, GSE81582 were filtered from the gene expression omnibus (GEO). Differentially expressed genes (DEGs) were identified through GEO2R, which were enriched in the GO term and KEGG pathway in DAVID. PPI network was constructed and analyzed using STRING and hub genes were screened out. The relationships between hub genes and prognoses in CRC were evaluated in GEPIA based on the cancer genome atlas (TCGA) and genotype-tissue expression (GTEx). The transcription factors and miRNA-mRNA interaction networks for hub genes were performed using miRnet and miRTarBase. The relationship between hub genes and tumor-infiltrating lymphocytes were analyzed in TIMER. The protein levels of hub genes were identified in HPA. The expression levels of hub gene in CRC and its effect on the biological effect of CRC cells were identified in vitro. As hub genes, the mRNA levels of BIRC5, CCNB1, KIF20A, NCAPG, and TPX2 were highly expressed in CRC and had excellent prognostic value. The BIRC5, CCNB1, KIF20A, NCAPG, and TPX2 were closely associated with transcription factors, miRNAs, tumor-infiltrating lymphocytes, suggesting their involvement in the regulation of CRC. BIRC5 highly expressed in CRC tissues and cells, and promoted the proliferation, migration, and invasion of CRC cells. BIRC5, CCNB1, KIF20A, NCAPG, and TPX2 are hub genes that serve as promising prognostic biomarkers in CRC. BIRC5 plays an important role in the development and progression of CRC

    Enhanced performance of LSCF cathode through surface modification

    No full text
    Mixed ionic-electronic conductors in the family of LaxSr1-xCoyFe1-yO3-delta (LSCF) have been widely studied as cathode materials for solid oxide fuel cells (SOFCs). However, the long-term stability and the limited surface catalytic activity are still a concern. Here we report a new catalyst La0.4875Ca0.0125Ce0.5O2-delta (LCC), which can significantly enhance the performance and stability of LSCF cathodes when applied as a thin-film coating on LSCF surface. For example, with 5 mu L 0.25 mol L-1 LCC solution infiltrated into LSCF cathode, the cathodic polarization resistance was reduced by similar to 60% (to similar to 0.076 Omega cm(2)) at 750 degrees C, leading to a peak power density of similar to 1.25 W/cm(2), which is similar to 18% higher than that for the unmodified LSCF cathode in an anode-supported cell. In addition, stable power output was observed for over 500 h operation at 750 degrees C under a constant voltage of 0.7 V.close1

    Raman spectroscopy study of SOFC electrode surfaces

    No full text
    Raman spectroscopy has been applied to probe and map surface species and incipient phases on the surfaces of electrodes in fuel cells, batteries, and supercapacitors under different conditions. In this presentation, we report our recent progress in the development of surface enhanced Raman spectroscopy (SERS) for enhancement of sensitivity to surface species and incipient phases on materials used in solid oxide fuel cells (SOFC). In particular, we demonstrated that SiO2 shell isolated Ag nanoparticles have excellent thermal robustness and chemical stability for SERS study of electrode materials at high temperatures, providing information vital to understanding the mechanisms of materials performance and degradation, thus offering critical insights for rational design of new materials with higher functionalities and performance.close0

    Transient Dynamic Response Analysis of Two-Dimensional Saturated Soil with Singular Boundary Method

    No full text
    In this paper, the singular boundary method (SBM) in conjunction with the exponential window method (EWM) is firstly extended to simulate the transient dynamic response of two-dimensional saturated soil. The frequency-domain (Fourier space) governing equations of Biot theory is solved by the SBM with a linear combination of the fundamental solutions. In order to avoid the perplexing fictitious boundary in the method of fundamental solution (MFS), the SBM places the source point on the physical boundary and eliminates the source singularity of the fundamental solution via the origin intensity factors (OIFs). The EWM is carried out for the inverse Fourier transform, which transforms the frequency-domain solutions into the time-domain solutions. The accuracy and feasibility of the SBM-EWM are verified by three numerical examples. The numerical comparison between the MFS and SBM indicates that the SBM takes a quarter of the time taken by the MFS

    Transient Dynamic Response Analysis of Two-Dimensional Saturated Soil with Singular Boundary Method

    No full text
    In this paper, the singular boundary method (SBM) in conjunction with the exponential window method (EWM) is firstly extended to simulate the transient dynamic response of two-dimensional saturated soil. The frequency-domain (Fourier space) governing equations of Biot theory is solved by the SBM with a linear combination of the fundamental solutions. In order to avoid the perplexing fictitious boundary in the method of fundamental solution (MFS), the SBM places the source point on the physical boundary and eliminates the source singularity of the fundamental solution via the origin intensity factors (OIFs). The EWM is carried out for the inverse Fourier transform, which transforms the frequency-domain solutions into the time-domain solutions. The accuracy and feasibility of the SBM-EWM are verified by three numerical examples. The numerical comparison between the MFS and SBM indicates that the SBM takes a quarter of the time taken by the MFS
    corecore