29 research outputs found

    Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells

    Get PDF
    BackgroundThe most aggressive subtype of breast cancer, triple-negative breast cancer (TNBC), has a worse prognosis and a higher probability of relapse since there is a narrow range of treatment options. Identifying and testing potential therapeutic targets for the treatment of TNBC is of high priority.MethodsUsing a transcriptional signature of triple-negative breast cancer collected from Gene Expression Omnibus (GEO), CMap was utilized to reposition compounds for the treatment of TNBC. CCK8 and colony formation experiments were performed to detect the effect of the candidate drug on the proliferation of TNBC cells. Meanwhile, transwell and wound healing assay were implemented to detect cell metastasis change caused by the candidate drug. Moreover, the proteomic approach was presently ongoing to evaluate the underlying mechanism of the candidate drug in TNBC. Furthermore, drug affinity responsive target stability (DARTS) coupled with LC-MS/MS was carried out to explore the potential drug target candidate in TNBC cells.ResultsWe found that the most widely used medication, eugenol, reduced the growth and metastasis of TNBC cells. According to the underlying mechanism revealed by proteomics, eugenol could inhibit TNBC cell proliferation and metastasis via the NOD1-NF-κB signaling pathway. DARTS experiment further revealed that eugenol may bind to NF-κB in TNBC cells.ConcludesOur findings pointed out that eugenol was a potential candidate drug for the treatment of TNBC

    Integrating TSPO PET imaging and transcriptomics to unveil the role of neuroinflammation and amyloid-β deposition in Alzheimer's disease.

    Get PDF
    PURPOSE Despite the revealed role of immunological dysfunctions in the development and progression of Alzheimer's disease (AD) through animal and postmortem investigations, direct evidence regarding the impact of genetic factors on microglia response and amyloid-β (Aβ) deposition in AD individuals is lacking. This study aims to elucidate this mechanism by integrating transcriptomics and TSPO, Aβ PET imaging in clinical AD cohort. METHODS We analyzed 85 patients with PET/MR imaging for microglial activation (TSPO, [18F]DPA-714) and Aβ ([18F]AV-45) within the prospective Alzheimer's Disease Immunization and Microbiota Initiative Study Cohort (ADIMIC). Immune-related differentially expressed genes (IREDGs), identified based on AlzData, were screened and verified using blood samples from ADIMIC. Correlation and mediation analyses were applied to investigate the relationships between immune-related genes expression, TSPO and Aβ PET imaging. RESULTS TSPO uptake increased significantly both in aMCI (P < 0.05) and AD participants (P < 0.01) and showed a positive correlation with Aβ deposition (r = 0.42, P < 0.001). Decreased expression of TGFBR3, FABP3, CXCR4 and CD200 was observed in AD group. CD200 expression was significantly negatively associated with TSPO PET uptake (r =-0.33, P = 0.013). Mediation analysis indicated that CD200 acted as a significant mediator between TSPO uptake and Aβ deposition (total effect B = 1.92, P = 0.004) and MMSE score (total effect B =-54.01, P = 0.003). CONCLUSION By integrating transcriptomics and TSPO PET imaging in the same clinical AD cohort, this study revealed CD200 played an important role in regulating neuroinflammation, Aβ deposition and cognitive dysfunction

    The jumping mechanism of flea beetles (Coleoptera, Chrysomelidae, Alticini), its application to bionics and preliminary design for a robotic jumping leg

    Get PDF
    Flea beetles (Coleoptera, Chrysomelidae, Galerucinae, Alticini) are a hyperdiverse group of organisms with approximately 9900 species worldwide. In addition to walking as most insects do, nearly all the species of flea beetles have an ability to jump and this ability is commonly understood as one of the key adaptations responsible for its diversity. Our investigation of flea beetle jumping is based on high-speed filming, micro- CT scans and 3D reconstructions, and provides a mechanical description of the jump. We reveal that the flea beetle jumping mechanism is a catapult in nature and is enabled by a small structure in the hind femur called an ‘elastic plate’ which powers the explosive jump and protects other structures from potential injury. The explosive catapult jump of flea beetles involves a unique ‘high-efficiency mechanism’ and ‘positive feedback mechanism’. As this catapult mechanism could inspire the design of bionic jumping limbs, we provide a preliminary design for a robotic jumping leg, which could be a resource for the bionics industry

    Comparison of Nasopharyngeal MR, 18 F-FDG PET/CT, and 18 F-FDG PET/MR for Local Detection of Natural Killer/T-Cell Lymphoma, Nasal Type.

    Get PDF
    Objectives The present study aims to compare the diagnostic efficacy of MR, 18F-FDG PET/CT, and 18F-FDG PET/MR for the local detection of early-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTL). Patients and Methods Thirty-six patients with histologically proven early-stage ENKTL were enrolled from a phase 2 study (Cohort A). Eight nasopharyngeal anatomical regions from each patient were imaged using 18F-FDG PET/CT and MR. A further nine patients were prospectively enrolled from a multicenter, phase 3 study; these patients underwent 18F-FDG PET/CT and PET/MR after a single 18F-FDG injection (Cohort B). Region-based sensitivity and specificity were calculated. The standardized uptake values (SUV) obtained from PET/CT and PET/MR were compared, and the relationship between the SUV and apparent diffusion coefficients (ADC) of PET/MR were analyzed. Results In Cohort A, of the 288 anatomic regions, 86 demonstrated lymphoma involvement. All lesions were detected by 18F-FDG PET/CT, while only 70 were detected by MR. 18F-FDG PET/CT exhibited a higher sensitivity than MR (100% vs. 81.4%, χ2 = 17.641, P < 0.001) for local detection of malignancies. The specificity of 18F-FDG PET/CT and MR were 98.5 and 97.5%, respectively (χ2 = 0.510, P = 0.475). The accuracy of 18F-FDG PET/CT was 99.0% and the accuracy of MR was 92.7% (χ2 = 14.087, P < 0.001). In Cohort B, 72 anatomical regions were analyzed. PET/CT and PET/MR have a sensitivity of 100% and a specificity of 92.5%. The two methods were consistent (κ = 0.833, P < 0.001). There was a significant correlation between PET/MR SUVmax and PET/CT SUVmax (r = 0.711, P < 0.001), and SUVmean (r = 0.685, P < 0.001). No correlation was observed between the SUV and the ADC. Conclusion In early-stage ENKTL, nasopharyngeal MR showed a lower sensitivity and a similar specificity when compared with 18F-FDG PET/CT. PET/MR showed similar performance compared with PET/CT

    Efficient Node and Sensed Module Management for Multisensory Wireless Sensor Networks

    No full text
    In target tracking wireless sensor networks, choosing a part of sensor nodes to execute tracking tasks and letting the other nodes sleep to save energy are efficient node management strategies. However, at present more and more sensor nodes carry many different types of sensed modules, and the existing researches on node selection are mainly focused on sensor nodes with a single sensed module. Few works involved the management and selection of the sensed modules for sensor nodes which have several multi-mode sensed modules. This work proposes an efficient node and sensed module management strategy, called ENSMM, for multisensory WSNs (wireless sensor networks). ENSMM considers not only node selection, but also the selection of the sensed modules for each node, and then the power management of sensor nodes is performed according to the selection results. Moreover, a joint weighted information utility measurement is proposed to estimate the information utility of the multiple sensed modules in the different nodes. Through extensive and realistic experiments, the results show that, ENSMM outperforms the state-of-the-art approaches by decreasing the energy consumption and prolonging the network lifetime. Meanwhile, it reduces the computational complexity with guaranteeing the tracking accuracy

    New immunotherapeutic strategies for chronic hepatitis B

    No full text
    Chronic hepatitis B (CHB) is one of the most important infectious diseases around the world. Currently, interferon and nucleos(t)ide analogues are the main drugs for CHB and have good therapeutic efficacy, but the ultimate goal of eliminating hepatitis B virus (HBV) in human body has not been achieved. Therefore, it is of vital importance to explore new therapeutic strategies and develop new drugs for CHB. Persistent HBV infection is closely associated with human body′s immune status, and studies have shown that immunotherapy may help to cure CHB. With reference to CHB patients′ immune status, this article reviews the research advances in new immunotherapeutic strategies including Toll-like receptor agonists, cell therapy, and therapeutic vaccines

    Weakly supervised deep learning for determining the prognostic value of 18F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type.

    Get PDF
    PURPOSE To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment 18F-FDG PET/CT results. METHODS One hundred and sixty-seven patients with ENKTL who underwent pretreatment 18F-FDG PET/CT were retrospectively collected. Eighty-four patients were followed up for at least 2 years (training set = 64, test set = 20). A WSDL method was developed to enable the integration of the remaining 83 patients with incomplete/missing follow-up information in the training set. To test generalization, these data were derived from three types of scanners. Prediction similarity index (PSI) was derived from deep learning features of images. Its discriminative ability was calculated and compared with that of a conventional deep learning (CDL) method. Univariate and multivariate analyses helped explore the significance of PSI and clinical features. RESULTS PSI achieved area under the curve scores of 0.9858 and 0.9946 (training set) and 0.8750 and 0.7344 (test set) in the prediction of progression-free survival (PFS) with the WSDL and CDL methods, respectively. PSI threshold of 1.0 could significantly differentiate the prognosis. In the test set, WSDL and CDL achieved prediction sensitivity, specificity, and accuracy of 87.50% and 62.50%, 83.33% and 83.33%, and 85.00% and 75.00%, respectively. Multivariate analysis confirmed PSI to be an independent significant predictor of PFS in both the methods. CONCLUSION The WSDL-based framework was more effective for extracting 18F-FDG PET/CT features and predicting the prognosis of ENKTL than the CDL method

    An Improved Adaptive Simulated Annealing Particle Swarm Optimization Algorithm for ARAIM Availability

    No full text
    Civil aviation transportation equipment is more convenient and faster than other transportation tools and is an essential part of intelligent transportation. It is significant to study the reliability of positioning information and enhance traffic safety. Advanced receiver autonomous integrity monitoring (ARAIM) can provide vertical guidance during the different navigation stages in civil aviation fields. The traditional multiple hypothesis solution separation (MHSS) algorithm distributes the probability of hazardous misleading information (PHMI) and probability of false alarm (PFA) uniformly over all visible satellites resulting in reduced global availability of ARAIM. Aiming at this problem, we proposed an adaptive simulated annealing particle swarm optimization (ASAPSO) algorithm to redistribute integrity and continuity risks and establish a protection level optimization model. Based on the real BeiDou navigation satellite system/global positioning system (BDS/GPS) data, the experimental results show that the optimized algorithm can reduce the vertical protection level (VPL), and the ARAIM global availability of BDS/GPS is improved by 1.73%∼2.73%. The optimized algorithm can improve the availability of integrity monitoring at different stages of the navigation system and provide a basis for ensuring the reliability of the positioning results
    corecore