288 research outputs found

    On the nonintegrability of equations for long- and short-wave interactions

    Full text link
    We examine the integrability of two models used for the interaction of long and short waves in dispersive media. One is more classical but arguably cannot be derived from the underlying water wave equations, while the other one was recently derived. We use the method of Zakharov and Schulman to attempt to construct conserved quantities for these systems at different orders in the magnitude of the solutions. The coupled KdV-NLS model is shown to be nonintegrable, due to the presence of fourth-order resonances. A coupled real KdV - complex KdV system is shown to suffer the same fate, except for three special choices of the coefficients, where higher-order calculations or a different approach are necessary to conclude integrability or the absence thereof.Comment: 9 pages, presented as a poster at The Tenth IMACS International Conference on Nonlinear Evolution Equations and Wave Phenomena: Computation and Theor

    Gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenesis

    Get PDF
    Introduction. Adipogenesis comprises multiple processes by which mesenchymal stem cells differentiate into adipocytes. To increase our knowledge of the mechanism underlying adipogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs), we performed full-genome gene expression microarray and gene ontology analyses of induced differentiation of hMSCs. Material and methods. Adipogenic differentiation of hMSCs was induced by an adipogenic medium, and total RNA was extracted from undifferentiated hMSCs (day 0) and differentiated adipocytes (day 14). Then microarray hybridization of RNA samples was performed. The GeneChip Operating Software was used to analyze the hybridization data to identify differentially expressed genes, which were performed Gene Ontology categorization and pathway analysis. Pathway-act-network and genes-act-network were built according to the Kyoto Encyclopedia of Genes and Genomes database. Some differentially expressed genes were subjected to qRT-PCR to verify the microarray data. Results. We detected a total of 3,821 differentially expressed genes, of which 753 were upregulated and 3,068 downregulated. These genes were well represented in a variety of functional categories, including collagen fibril organization, brown fat cell differentiation, cell division, and S phase of mitotic cell cycle. Subsequently, pathway analysis was conducted, and significant pathways (from top 50) were selected for pathway-act-network analysis, which indicated that the mitogen-activated protein kinase (MAPK) pathway and cell cycle were of high degrees (> 10). Gene-act-network analysis showed that insulin-like growth factor 1 receptor (IGF1R), histone deacetylase 1 (HDAC1), HDAC2, MAPK13, MAPK8, phosphoinositide-3-kinase regulatory subunit 1 (PI3KR1), and PI3KR2 also had high degrees (> 18). Conclusions. Collectively, these data provide novel information and could serve as a basis for future study to clarify the mechanisms underlying adipocyte differentiation of hMSCs

    Positive association between different triglyceride glucose index-related indicators and psoriasis: evidence from NHANES

    Get PDF
    BackgroundPsoriasis is a chronic inflammatory skin disease with effects that extend beyond the skin. Insulin resistance (IR) has been associated with psoriasis, but it remains unclear how indicators related to the triglyceride glucose (TyG) index, which were associate with IR, are associated with the condition.ObjectiveThe purpose of this study was to investigate the association between psoriasis and three TyG-related indicators: triglyceride glucose-body mass index (TyG-BMI), triglyceride glucose-waist to height ratio (TyG-WHtR), and triglyceride glucose-waist circumference (TyG-WC).MethodsData from adults aged 20 to 80 years in the National Health and Nutrition Examination Survey (NHANES) from 2003 to 2006 and 2009 to 2014 were utilized. Institutional Review Board approval and documented written consent was obtained from participants by NHANES (Protocol #2005–06). The patients were divided into three groups based on TyG-BMI, TyG-WC, and TyG-WHtR: Q1 (1st quintile), Q2 (2nd-3rd quintiles), and Q3 (4th-5th quintiles). Differences between the groups were further explored. Multivariate logistic regressions were used to investigate the correlation between these three indicators and psoriasis, with results expressed as odds ratios (OR) and 95% confidence intervals (CI). Subgroup analysis and supplementary analysis was further conducted to explore potential influencing factors.ResultsThe study included 9,291 participants, of which 260 had psoriasis. Compared Q2 and Q3 of TyG-BMI, TyG-WC, and TyG-WHtR to Q1, there were significantly associate with psoriasis. Among the three indicators, TyG-WC consistently had the highest OR values in Models 1 and 2 (Model 1: Q3 OR (95% CI) = 2.155 (1.442-3.220); Model 2: Q3 OR (95% CI) = 2.029 (1.341-3.069)). While in Model 3, the TyG-BMI shows more significant relationship with psoriasis (Model 3 of TyG-BMI: Q3 OR (95% CI) = 1.948 (1.300-3.000)). Similar results were observed in the majority of subgroups and in supplementary analysis.ConclusionThis study identified a stable and strong positive association between TyG-related indicators (TyG-BMI, TyG-WC, and TyG-WHtR) and psoriasis. This association persisted even after adjusting for multiple factors. It is suggested that high IR is significantly associated with psoriasis

    Potential modulating effects of Allium mongolicum regel ethanol extract on rumen fermentation and biohydrogenation bacteria of dairy cows in vitro

    Get PDF
    The objective of this study was to evaluate the potential modulating effects of Allium mongolicum regel ethanol extract (AME) on rumen fermentation and biohydrogenation (BH) bacteria in vitro. Four Holstein cows were used as donors for the rumen fluid used in this study. In experiment 1, five treatments (supplemented with 0 mg/g, 1 mg/g, 2 mg/g, 3 mg/g, and 4 mg/g of AME based on fermentation substrate, respectively) were conducted to evaluate the effects of different levels of AME on fermentation status in vitro. The results showed that after 24 h of fermentation, MCP was reduced with AME supplementation (p < 0.05), and the multiple combinations of different combinations index (MFAEI) value was the highest with 3 mg/g of AME. In experiment 2, six treatments were constructed which contained: control group (A1); the unsaturated fatty acid (UFA) mixture at 3% concentration (A2); the mixture of A2 and 3 mg/g of AME (A3); 3 mg/g of AME (A4); the UFA mixture at 1.5% concentration (A5); the mixture of A5 and 3 mg/g of AME (A6). The abundance of bacterial species involved in BH was measured to evaluate the potential modulating effect of AME on rumen BH in vitro. Compared with the A1 group, the A3, A4, and A6 groups both showed significant decreases in the abundance of rumen BH microbial flora including Butyrivibrio proteoclasticus, Butyrivibrio fibrisolvens, Ruminococcus albus and Clostridium aminophilum (p < 0.01). The A3 group was less inhibitory than A4 in the abundance of B. proteoclasticus, B. fibrisolvens, and R. albus, and the inhibitory effect of the A6 group was higher than that of A4. In conclusion, the supplementation with 3 mg/g of AME could modulate the rumen fermentation and affect BH key bacteria, which suggests that AME may have the potential to inhibit the rumen BH of dairy cows

    Sequencing and Genomic Diversity Analysis of IncHI5 Plasmids

    Get PDF
    IncHI plasmids could be divided into five different subgroups IncHI1–5. In this study, the complete nucleotide sequences of seven blaIMP- or blaVIM-carrying IncHI5 plasmids from Klebsiella pneumoniae, K. quasipneumoniae, and K. variicola were determined and compared in detail with all the other four available sequenced IncHI5 plasmids. These plasmids carried conserved IncHI5 backbones composed of repHI5B and a repFIB-like gene (replication), parABC (partition), and tra1 (conjugal transfer). Integration of a number of accessory modules, through horizontal gene transfer, at various sites of IncHI5 backbones resulted in various deletions of surrounding backbone regions and thus considerable diversification of IncHI5 backbones. Among the accessory modules were three kinds of resistance accessory modules, namely Tn10 and two antibiotic resistance islands designated ARI-A and ARI-B. These two islands, inserted at two different fixed sites (one island was at one site and the other was at a different site) of IncHI5 backbones, were derived from the prototype Tn3-family transposons Tn1696 and Tn6535, respectively, and could be further discriminated as various intact transposons and transposon-like structures. The ARI-A or ARI-B islands from different IncHI5 plasmids carried distinct profiles of antimicrobial resistance markers and associated mobile elements, and complex events of transposition and homologous recombination accounted for assembly of these islands. The carbapenemase genes blaIMP-4, blaIMP-38 and blaVIM-1 were identified within various class 1 integrons from ARI-A or ARI-B of the seven plasmids sequenced in this study. Data presented here would provide a deeper insight into diversification and evolution history of IncHI5 plasmids

    Genetic Characterization of a blaVIM–24-Carrying IncP-7β Plasmid p1160-VIM and a blaVIM–4-Harboring Integrative and Conjugative Element Tn6413 From Clinical Pseudomonas aeruginosa

    Get PDF
    This study presents three novel integrons In1394, In1395, and In1443, three novel unit transposons Tn6392, Tn6393, and Tn6403, one novel conjugative element (ICE) Tn6413, and the first sequenced IncP-7 resistance plasmid p1160-VIM from clinical Pseudomonas aeruginosa. Detailed sequence comparison of p1160-VIM (carrying Tn6392 and Tn6393) and Tn6413 (carrying Tn6403) with related elements were performed. Tn6392, Tn6393, and Tn6403 were generated from integration of In1394 (carrying blaVIM–24), In1395 and In1443 (carrying blaVIM–4) into prototype Tn3-family unit transposons Tn5563, Tn1403, and Tn6346, respectively. To the best of our knowledge, this is the first report of a blaVIM–24-carrying P. aeruginosa isolate

    Integrated plasma proteomic and single-cell immune signaling network signatures demarcate mild, moderate, and severe COVID-19

    Get PDF
    The biological determinants of the wide spectrum of COVID-19 clinical manifestations are not fully understood. Here, over 1400 plasma proteins and 2600 single-cell immune features comprising cell phenotype, basal signaling activity, and signaling responses to inflammatory ligands were assessed in peripheral blood from patients with mild, moderate, and severe COVID-19, at the time of diagnosis. Using an integrated computational approach to analyze the combined plasma and single-cell proteomic data, we identified and independently validated a multivariate model classifying COVID-19 severity (multi-class AUCtraining = 0.799, p-value = 4.2e-6; multi-class AUCvalidation = 0.773, p-value = 7.7e-6). Features of this high-dimensional model recapitulated recent COVID-19 related observations of immune perturbations, and revealed novel biological signatures of severity, including the mobilization of elements of the renin-angiotensin system and primary hemostasis, as well as dysregulation of JAK/STAT, MAPK/mTOR, and NF-κB immune signaling networks. These results provide a set of early determinants of COVID-19 severity that may point to therapeutic targets for the prevention of COVID-19 progression
    • …
    corecore