3 research outputs found

    Quantitative 3D Temperature Rendering of Deep Tumors by a NIR-II Reversibly Responsive W‑VO<sub>2</sub>@PEG Photoacoustic Nanothermometer to Promote Precise Cancer Photothermal Therapy

    No full text
    Accurately monitoring the three-dimensional (3D) temperature distribution of the tumor area in situ is a critical task that remains challenging in precision cancer photothermal (PT) therapy. Here, by ingeniously constructing a polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO2@PEG) photoacoustic (PA) nanothermometer (NThem) that linearly and reversibly responds to the thermal field near the human-body-temperature range, the authors propose a method to realize quantitative 3D temperature rendering of deep tumors to promote precise cancer PT therapy. The prepared NThems exhibit a mild phase transition from the monoclinic phase to the rutile phase when their temperature grows from 35 to 45 °C, with the optical absorption sharply increased ∼2-fold at 1064 nm in an approximately linear manner in the near-infrared-II (NIR-II) region, enabling W-VO2@PEG to be used as NThems for quantitative temperature monitoring of deep tumors with basepoint calibration, as well as diagnostic agents for PT therapy. Experimental results showed that the temperature measurement accuracy of the proposed method can reach 0.3 °C, with imaging depths up to 2 and 0.65 cm in tissue-mimicking phantoms and mouse tumor tissue, respectively. In addition, it was verified through PT therapy experiments in mice that the proposed method can achieve extremely high PT therapy efficiency by monitoring the temperature of the target area during PT therapy. This work provides a potential demonstration promoting precise cancer PT therapy through quantitative 3D temperature rendering of deep tumors by PA NThems with higher security and higher efficacy

    Host–Guest Tethered DNA Transducer: ATP Fueled Release of a Protein Inhibitor from Cucurbit[7]uril

    No full text
    Host–guest complexes are emerging as powerful components in functional systems with applications ranging from materials to biomedicine. In particular, CB7 based host–guest complexes have received much attention for the controlled release of drugs due to the remarkable ability of CB7 toward binding input molecules in water with high affinity leading to displacement of CB7 from included pharmacophores (or from drug loaded porous particles). However, the release of bound guests from CB7 in response to endogenous biological molecules remains limited since the input biomolecule needs to have the appropriate chemical structure to bind tightly into the CB7 cavity. Herein we describe a synthetic transducer based on self-assembling DNA–small molecule chimeras (DCs) that is capable of converting a chosen biological input, adenosine triphosphate (ATP; that does not directly bind to the CB7 host), into functional displacement of a protein inhibitor that is bound within the CB7 host. Our systemwhich features the first example of a covalent CB-DNA conjugateis highly modular and can be adapted to enable responsiveness to other biologically/clinically relevant stimuli via its split DNA aptamer architecture

    Host–Guest Interactions Derived Multilayer Perylene Diimide Thin Film Constructed on a Scaffolding Porphyrin Monolayer

    No full text
    The development of methods to grow well-ordered chromophore thin films on solid substrates is of importance because such surface-associated arrays have potential applications in the generation of functional electronic and optical materials and devices. In this article, we demonstrate a straightforward layer-by-layer (LBL) supramolecular deposition strategy to prepare numerous layers (up to 19) of functionalized perylene diimide (PDI) chromophores built upon a covalent scaffolding multivalent porphyrin monolayer. Our thin film formation strategy employs water as the immersion solvent and exploits the β-cyclodextrin–adamantane host–guest couple in addition to PDI based aromatic stacking. Within the resultant film the porphyrin scaffold is oriented close to parallel to the glass substrate while the PDI chromophores are aligned closer to the surface normal. Together, the porphyrin monolayer and the multi-PDI layers exhibit a large absorption bandwidth in the visible spectrum. Importantly, because a self-assembly strategy was utilized, when a single monolayer of PDI is deposited on the porphyrin scaffolding layer, this PDI monolayer can be readily disassembled by washing with DMF leading to the regeneration of the porphyrin monolayer. The PDI thin film can subsequently be regrown from the regenerated porphyrin surface. The reported LBL strategy will be of broad interest for researchers developing well-organized chromophoric films and materials due to its simplicity as well as the added advantage of being performed in sustainable and cost-effective aqueous media
    corecore