954 research outputs found

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    Cooperative Beamforming Design for Multiple RIS-Assisted Communication Systems

    Full text link
    Reconfigurable intelligent surface (RIS) provides a promising way to build programmable wireless transmission environments. Owing to the massive number of controllable reflecting elements on the surface, RIS is capable of providing considerable passive beamforming gains. At present, most related works mainly consider the modeling, design, performance analysis and optimization of single-RIS-assisted systems. Although there are a few of works that investigate multiple RISs individually serving their associated users, the cooperation among multiple RISs is not well considered as yet. To fill the gap, this paper studies a cooperative beamforming design for multi-RIS-assisted communication systems, where multiple RISs are deployed to assist the downlink communications from a base station to its users. To do so, we first model the general channel from the base station to the users for arbitrary number of reflection links. Then, we formulate an optimization problem to maximize the sum rate of all users. Analysis shows that the formulated problem is difficult to solve due to its non-convexity and the interactions among the decision variables. To solve it effectively, we first decouple the problem into three disjoint subproblems. Then, by introducing appropriate auxiliary variables, we derive the closed-form expressions for the decision variables and propose a low-complexity cooperative beamforming algorithm. Simulation results have verified the effectiveness of the proposed algorithm through comparison with various baseline methods. Furthermore, these results also unveil that, for the sum rate maximization, distributing the reflecting elements among multiple RISs is superior to deploying them at one single RIS

    Stator Design Aspects for Permanent Magnet Super-conducting Wind Power Generators

    Get PDF
    This paper presents an electromagnetic design of a permanent magnet superconducting wind power generator with different stator teeth structures and armature winding arrangements. The main contribution of this paper is that a novel stator configuration is proposed, which is beneficial for superconducting machines. The topology of tapering poles makes it possible for the machine to carry larger current without severe magnetic saturation in the stator teeth. Meantime, the distributed arrangement of wires in the stator slot can reduce the ac loss in the same output power condition. Finite element analysis with commercial software is used to support these results

    Acceleration for Timing-Aware Gate-Level Logic Simulation with One-Pass GPU Parallelism

    Full text link
    Witnessing the advancing scale and complexity of chip design and benefiting from high-performance computation technologies, the simulation of Very Large Scale Integration (VLSI) Circuits imposes an increasing requirement for acceleration through parallel computing with GPU devices. However, the conventional parallel strategies do not fully align with modern GPU abilities, leading to new challenges in the parallelism of VLSI simulation when using GPU, despite some previous successful demonstrations of significant acceleration. In this paper, we propose a novel approach to accelerate 4-value logic timing-aware gate-level logic simulation using waveform-based GPU parallelism. Our approach utilizes a new strategy that can effectively handle the dependency between tasks during the parallelism, reducing the synchronization requirement between CPU and GPU when parallelizing the simulation on combinational circuits. This approach requires only one round of data transfer and hence achieves one-pass parallelism. Moreover, to overcome the difficulty within the adoption of our strategy in GPU devices, we design a series of data structures and tune them to dynamically allocate and store new-generated output with uncertain scale. Finally, experiments are carried out on industrial-scale open-source benchmarks to demonstrate the performance gain of our approach compared to several state-of-the-art baselines
    corecore