71 research outputs found

    Photodegradation of RhB over YVO4/g-C3N4 composites under visible light irradiation

    Get PDF
    National Natural Science Foundation of China [21003109, 51108424]; Opening-foundation of State Key Laboratory Physical Chemistry and Solid Surfaces, Xiamen University, China [201311]; Science Foundation of Zhejiang Normal University [KJ20120028]A series of novel YVO4/g-C3N4 photocatalysts were prepared by a facile mixing and calcination method. The obtained composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, ultraviolet visible diffuse reflection spectroscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and a photocurrent-time experiment. The rhodamine B dye was selected as a model pollutant to evaluate the photocatalytic activity of the as-prepared YVO4/g-C3N4 composite. It shows that the photocatalytic activity of g-C3N4 can be largely improved by the doping of YVO4. The optimal YVO4 content is determined to be 25.8 wt%; and the corresponding degradation rate is 2.34 h(-1), about 2.75 folds that of pure g-C3N4. A possible mechanism of YVO4 on the enhancement of visible light performance is proposed. It suggests that YVO4 plays a key role, which may lead to efficiently suppressing the recombination of photogenerated charge carriers, consequently, improving the visible light photoactivity

    Ultra-low-dose spectral-detector computed tomography for the accurate quantification of pulmonary nodules: an anthropomorphic chest phantom study

    Get PDF
    PURPOSETo assess the quantification accuracy of pulmonary nodules using virtual monoenergetic images (VMIs) derived from spectral-detector computed tomography (CT) under an ultra-low-dose scan protocol.METHODSA chest phantom consisting of 12 pulmonary nodules was scanned using spectral-detector CT at 100 kVp/10 mAs, 100 kVp/20 mAs, 120 kVp/10 mAs, and 120 kVp/30 mAs. Each scanning protocol was repeated three times. Each CT scan was reconstructed utilizing filtered back projection, hybrid iterative reconstruction, iterative model reconstruction (IMR), and VMIs of 40–100 keV. The signal-to-noise ratio and air noise of images, absolute differences, and absolute percentage measurement errors (APEs) of the diameter, density, and volume of the four scan protocols and ten reconstruction images were compared.RESULTSWith each fixed reconstruction image, the four scanning protocols exhibited no significant differences in APEs for diameter and density (all P > 0.05). Of the four scan protocols and ten reconstruction images, APEs for nodule volume had no significant differences (all P > 0.05). At 100 kVp/10 mAs, APEs for density using IMR were the lowest (APE-mean: 6.69), but no significant difference was detected between VMIs at 50 keV (APE-mean: 11.69) and IMR (P = 0.666). In the subgroup analysis, at 100 kVp/10 mAs, there were no significant differences between VMIs at 50 keV and IMR in diameter and density (all P > 0.05). The radiation dose at 100 kVp/10 mAs was reduced by 77.8% compared with that at 120 kVp/30 mAs.CONCLUSIONCompared with IMR, reconstruction at 100 kVp/10 mAs and 50 keV provides a more accurate quantification of pulmonary nodules, and the radiation dose is reduced by 77.8% compared with that at 120 kVp/30 mAs, demonstrating great potential for ultra-low-dose spectral-detector CT

    Grafting of Methacrylic Acid and Other Monomers onto Butadiene-Containing Polymers to Achieve Flame Retardancy

    No full text
    Methacrylic acid has been grafted onto two styrene-butadiene block copolymers, SBS and K-resin, by the thermal decomposition of hydroperoxide generated by the anthracene sensitized formation of singlet oxygen. The sorption of anthracene at room temperature from a methanolic solution into the polymer film was affected by the heterogeneity of structure of the polymer. The effect of variables, such as time of irradiation, concentration of monomer and anthracene, reaction time and temperature, on the graft yield were investigated. The amounts of cross-likinkg and homopolymer in grafted polymer were also examined. The grafted methacrylic acid has been converted to its sodium salt by treatment with aqueous sodium hydroxide. The TGA residue that is obtained at 800 dedrees Celsius is greater than that expected based on the starting materials. Preliminary cone calorimetry results indicate that a graft layer of sodium methacrylate increases the time to ignition, decreases the peak heat release rate, and also decreases amount of smoke

    Gas Sensitivity and Sensing Mechanism Studies on Au-Doped TiO2 Nanotube Arrays for Detecting SF6 Decomposed Components

    No full text
    The analysis to SF6 decomposed component gases is an efficient diagnostic approach to detect the partial discharge in gas-insulated switchgear (GIS) for the purpose of accessing the operating state of power equipment. This paper applied the Au-doped TiO2 nanotube array sensor (Au-TiO2 NTAs) to detect SF6 decomposed components. The electrochemical constant potential method was adopted in the Au-TiO2 NTAs’ fabrication, and a series of experiments were conducted to test the characteristic SF6 decomposed gases for a thorough investigation of sensing performances. The sensing characteristic curves of intrinsic and Au-doped TiO2 NTAs were compared to study the mechanism of the gas sensing response. The results indicated that the doped Au could change the TiO2 nanotube arrays’ performances of gas sensing selectivity in SF6 decomposed components, as well as reducing the working temperature of TiO2 NTAs

    A DFT Calculation of Fluoride-Doped TiO2 Nanotubes for Detecting SF6 Decomposition Components

    No full text
    Gas insulated switchgear (GIS) plays an important role in the transmission and distribution of electric energy. Detecting and analyzing the decomposed components of SF6 is one of the important methods to realize the on-line monitoring of GIS equipment. In this paper, considering the performance limits of intrinsic TiO2 nanotube gas sensor, the adsorption process of H2S, SO2, SOF2 and SO2F2 on fluoride-doped TiO2 crystal plane was simulated by the first-principle method. The adsorption mechanism of these SF6 decomposition components on fluorine-doped TiO2 crystal plane was analyzed from a micro perspective. Calculation results indicate that the order of adsorption effect of four SF6 decomposition components on fluoride-doped TiO2 crystal plane is H2S > SO2 > SOF2 > SO2F2. Compared with the adsorption results of intrinsic anatase TiO2 (101) perfect crystal plane, fluorine doping can obviously enhance the adsorption ability of TiO2 (101) crystal plane. Fluorine-doped TiO2 can effectively distinguish and detect the SF6 decomposition components based on theoretical analysis
    corecore