1,195 research outputs found

    Alzheimer's Disease Prediction Using Longitudinal and Heterogeneous Magnetic Resonance Imaging

    Full text link
    Recent evidence has shown that structural magnetic resonance imaging (MRI) is an effective tool for Alzheimer's disease (AD) prediction and diagnosis. While traditional MRI-based diagnosis uses images acquired at a single time point, a longitudinal study is more sensitive and accurate in detecting early pathological changes of the AD. Two main difficulties arise in longitudinal MRI-based diagnosis: (1) the inconsistent longitudinal scans among subjects (i.e., different scanning time and different total number of scans); (2) the heterogeneous progressions of high-dimensional regions of interest (ROIs) in MRI. In this work, we propose a novel feature selection and estimation method which can be applied to extract features from the heterogeneous longitudinal MRI. A key ingredient of our method is the combination of smoothing splines and the l1l_1-penalty. We perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The results corroborate the advantages of the proposed method for AD prediction in longitudinal studies

    IT vs. Marketing: Efficiency and Effectiveness Evaluation

    Get PDF
    Owing to budget constraints, managers should balance the expenditure requirement of IT and marketing department. This paper offers a new method to evaluate the importance of IT department and marketing department. It introduces the triangular three-stage DEA model to measure the expenditure efficiency and effectiveness. Using the data of the hotel industry of Macao, it shows that IT and marketing effectiveness is both positively correlated to productivity while efficiency is not significantly correlated to effectiveness. That means hotel managers need to more carefully and proactively examine the related budgets to be allocated to IT and marketing. The correlation coefficient of marketing effectiveness (coefficient=0.44) is higher than that of IT effectiveness (coefficient=0.41), which shows that in the sample period marketing expenses are somewhat a little more contributive to the business value than IT. This new way can be a reference for managers to set up the budget

    The fate of Arabidopsis thaliana homeologous CNSs and their motifs in the Paleohexaploid Brassica rapa.

    Get PDF
    Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana-A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy and into Brassica rapa. Thus, a single Brassicaceae CNS has six potential orthologous positions in B. rapa; a single Arabidopsis CNS has three potential homeologous positions. We reasoned that a CNS, if present on a singlet Brassica gene, would be unlikely to lose function compared with a more redundant CNS, and this is the case. Redundant CNSs go nondetectable often. Using this logic, each mechanism of CNS loss was assigned a metric of functionality. By definition, proved deletions do not function as sequence. Our results indicated that CNSs that go nondetectable by base substitution or large insertion are almost certainly still functional (redundancy does not matter much to their detectability frequency), whereas those lost by inferred deletion or indels are approximately 75% likely to be nonfunctional. Overall, an average nondetectable, once-redundant CNS more than 30 bp in length has a 72% chance of being nonfunctional, and that makes sense because 97% of them sort to a molecular mechanism with deletion in its description, but base substitutions do cause loss. Similarly, proved-functional G-boxes go undetectable by deletion 82% of the time. Fractionation mutagenesis is a procedure that uses polyploidy as a mutagenic agent to genetically alter RNA expression profiles, and then to construct testable hypotheses as to the function of the lost regulatory site. We show fractionation mutagenesis to be a deletion machine in the Brassica lineage

    Design of Power Split Hybrid Powertrains with Multiple Planetary Gears and Clutches.

    Full text link
    Fuel economy standards for automobiles have become much tighter in many countries in the past decades. Hybrid electric vehicles (HEVs), as one of the most promising solutions to take on these challenging standards, have been successful in the US market. In the last few years, an observed trend is to use multiple planetary gears with multiple operating modes to further improve vehicle fuel economy and driving performance. Most work in existing literature on HEV design and optimization has been based on specific configurations, rather than exhaustively searching through all possible configurations. This limitation arises from the large size of the design space–millions to trillions of possible topological candidates. In this dissertation, a systematic design methodology is presented, which enables the exhaustive search of multi-mode powertrain systems. As a first step, a systematic analysis has been performed for all 12 single PG configurations with multiple operating modes enabled by clutch operation. The Dynamic Programming (DP) technique is used to solve the optimal energy management problems for each design candidate. For multi-mode HEVs with multiple PGs, an automated modeling and mode classification methodology is developed, which makes it possible to exhaustively search all possible designs. General mode shift mechanisms are studied, while mode shift cost is evaluated using Dijkstra’s algorithm, which identifies the optimal mode shift path. For each candidate, the optimal control problem needs to be solved so that all designs can be compared based on their best possible execution. A fast and near-optimal energy management strategy is proposed. The comparison results show that it is up to 10,000 times faster than DP while achieving similar performance. To ensure acceptable launching performance of the design candidates, a fast and optimal acceleration performance test procedure is developed, which can be used to determine optimal control inputs and mode shift schedule. Combining all proposed methodologies produces a systematic and optimal design procedure. Optimization results show that the exhaustive search design method is able to identify dozens of better designs than the production hybrid vehicle models available in today’s market.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116659/1/xiaowuz_1.pd
    • …
    corecore