39 research outputs found

    Study on atomization mechanisms and spray fragmentation characteristics of water and emulsion butachlor

    Get PDF
    Agricultural chemicals are commonly used to control pests and weeds, but cause pesticide waste problems. Oil-based emulsions are often used as pesticide formulations to improve pesticide utilization. In this study, the spray visualization experiment of the water and oil-based emulsion butachlor is carried out using an ST flat fan nozzle at 0.1–0.5 MPa pressure. The dimensionless method is used to analyze the difference in liquid sheet fragmentation morphology and disintegration process and the influence of different fragmentation methods on droplet size. It is found that the hydrophobic components in pesticide have a significant effect on the morphology and process of atomization fragmentation. When spray liquid is water, the liquid sheet breaks up into liquid ligaments due to the Rayleigh instability, then the ligaments break up into droplets. The side view of a liquid sheet is a large-amplitude wave disturbance. When the spray liquid is the emulsion butachlor, holes are generated on the liquid sheet, then the holes break up into droplets. The fragmentation method of emulsion spray is the perforation mechanism. Compared with water spray, the presence of the pesticide butachlor increases the droplet size and spray angle and improves the uniformity of droplet size distribution but reduces the breakup length. The spray angle shows a power law dependence of the Weber number with a power of 0.17 for all conditions tested here. At 0.3 MPa, DV50 increases 25%, and span decreases from 1.187 to 1.172. This study could provide reference for the addition of agricultural additives, the improvement of spray operation efficiency, and the establishment of spray fragmentation mechanism

    Characterization of the Nucleocytoplasmic Transport Mechanisms of Epstein-Barr Virus BFLF2

    Get PDF
    Background/Aims: Epstein-Barr virus (EBV) BFLF2, the homologue of herpes simplex virus 1 (HSV-1) UL31, is crucial for the efficient viral DNA packaging and primary egress across the nuclear membrane. However, we still do not know its subcellular transport mechanisms. Methods: Interspecies heterokaryon assays were utilized to detect the nucleocytoplasmic shuttling of BFLF2, and mutation analysis, plasmid transfection and fluorescence microscopy assays were performed to identify the functional nuclear localization sequence (NLS) and nuclear export sequence (NES) of BFLF2 in live cells. Furthermore, the nuclear import and export of BFLF2 were assessed by confocal microscopy, co-immunoprecipitation and immunoblot assays. Results: BFLF2 was confirmed to shuttle between the nucleus and cytoplasm. Two predicted NESs were shown to be nonfunctional, yet we proved that the nuclear export of BFLF2 was mediated through transporter associated with antigen processing (TAP), but not chromosomal region maintenance 1 (CRM1) dependent pathway. Furthermore, one functional NLS, 22RRLMHPHHRNYTASKASAH40, was identified, and the aa22-23, aa22-25, aa28-30 and aa37-40 had an important role in the nuclear localization of BFLF2. Besides, the nuclear import of BFLF2 was demonstrated through Ran-, importin α7-, importin β1- and transportin-1-dependent mechanism that does not require importin α1, α3 and α5. Conclusion: These works are of significance for the further study of the functions of BFLF2 during EBV infection, as well as for further insights into the design of new antiviral drug target and vaccine development against EBV

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Optical Technologies for Single-Cell Analysis on Microchips

    No full text
    Cell analysis at the single-cell level is of great importance to investigate the inherent heterogeneity of cell populations and to understand the morphology, composition, and function of individual cells. With the continuous innovation of analytical techniques and methods, single-cell analysis on microfluidic chip systems has been extensively applied for its precise single-cell manipulation and sensitive signal response integrated with various detection techniques, such as optical, electrical, and mass spectrometric analyses. In this review, we focus on the specific optical events in single-cell analysis on a microfluidic chip system. First, the four most commonly applied optical technologies, i.e., fluorescence, surface-enhanced Raman spectroscopy, surface plasmon resonance, and interferometry, are briefly introduced. Then, we focus on the recent applications of the abovementioned optical technologies integrated with a microfluidic chip system for single-cell analysis. Finally, future directions of optical technologies for single-cell analysis on microfluidic chip systems are predicted

    Single-cell Analysis with Microfluidic Devices

    No full text

    The thermal response of the ignition and combustion of high-energy material projectiles under the influence of heat

    No full text
    The thermal response of energetic materials involves processes of thermochemical mechanical coupling, which can lead to thermal damage in such materials both before and after ignition, thereby increasing ignition sensitivity and the level of danger. Many studies to date have either neglected or oversimplified the effects of thermal coupling, leading to significant discrepancies between simulated and experimental outcomes. This paper aims to examine the complex processes of ammunition ignition, combustion, and detonation. Employing finite element simulations in conjunction with Arrhenius dynamics and the ignition growth model theory under thermodynamic coupling analysis, it simulates the entire process from the thermal expansion of B explosive prior to ignition, through to combustion and detonation. It establishes the relationship between the damage and fracture state of the shell and the thermal response of the energetic material at varying heating rates. Findings indicate that the severity of the thermal response is determined by the balance between pressure accumulation and the loss of confinement leading to pressure release. Specifically, at heating rates below 0.25 K/min, the shell fractures before combustion of the energetic material; whereas, at rates exceeding 0.375 K/min, the shell fractures after combustion, significantly increasing the risk. The simulation outcomes of this study show strong correlation with experimental results reported in the literature, offering a valuable reference for simulating the ignition and combustion responses of ammunition with similar structural characteristics

    Effect of Physical Properties of an Emulsion Pesticide on the Atomisation Process and the Spatial Distribution of Droplet Size

    No full text
    In the process of applying plant protection sprays, the atomisation process of complex pesticide components such as emulsion pesticides is different from that of water. Indeed, emulsion is often used as an additive to spray to reduce drift. Therefore, this study investigated the different morphological characteristics that occur between emulsions and water during atomisation at different pressures through visualisation experiments and interpreting the formation of structural differences between the two fragmentation mechanisms. The effect of liquid sheet structure on droplet size distribution was analysed in three-dimensional space, not only from one spatial perspective, but how it alters the morphological structures of liquid sheet leading to different potential droplet drift characteristics. It was found that the smaller the liquid sheet disturbance, the more concentrated the droplet size distribution, the more intense the liquid sheet disturbance, the more dispersed the droplet size distribution. The addition of 0.02% emulsion significantly reduced the proportion of V100 (the ratio of volume with drops smaller than 100 μm to the total volume of all droplets) from 21.33% to 10.24%, and the higher the emulsion concentration, the smaller the V100. The ability of the emulsion to increase V400 decreased with increasing pressure

    Effect of Physical Properties of an Emulsion Pesticide on the Atomisation Process and the Spatial Distribution of Droplet Size

    No full text
    In the process of applying plant protection sprays, the atomisation process of complex pesticide components such as emulsion pesticides is different from that of water. Indeed, emulsion is often used as an additive to spray to reduce drift. Therefore, this study investigated the different morphological characteristics that occur between emulsions and water during atomisation at different pressures through visualisation experiments and interpreting the formation of structural differences between the two fragmentation mechanisms. The effect of liquid sheet structure on droplet size distribution was analysed in three-dimensional space, not only from one spatial perspective, but how it alters the morphological structures of liquid sheet leading to different potential droplet drift characteristics. It was found that the smaller the liquid sheet disturbance, the more concentrated the droplet size distribution, the more intense the liquid sheet disturbance, the more dispersed the droplet size distribution. The addition of 0.02% emulsion significantly reduced the proportion of V100 (the ratio of volume with drops smaller than 100 μm to the total volume of all droplets) from 21.33% to 10.24%, and the higher the emulsion concentration, the smaller the V100. The ability of the emulsion to increase V400 decreased with increasing pressure
    corecore