16 research outputs found

    Expression of AR variants and AR regulated proteins in metastatic CRPC.

    No full text
    <p>(<b>A</b>) IHC staining for N-terminal AR (a), C-terminal AR (b), PSA (c), PSMA (d), TMPRSS2 (e), AKT-1 (f), Ki-67(g), Negative control (h) on a metastatic CRPC tissue (magnification x200, insert x400). (<b>B</b>) PSA, PSMA, TMPRSS2 and AKT-1 staining profiles of CRPC.</p

    AR staining profiles of normal prostate, primary PCa and CRPC.

    No full text
    <p>(<b>A</b>) IHC staining for N- and C-terminal AR in normal prostate (NP) (a and b), hyperplastic prostate (HP) (c and d) and primary PCa (e-h) (magnification x200). (<b>B</b>) Comparison of AR staining profiles among normal prostate, hyperplastic prostate and primary PCa. (<b>C</b>) Comparison of AR staining profiles between primary PCa and metastatic CRPC.</p

    Clinical data of 42 CRPC patients<sup>*</sup>.

    No full text
    <p>*All 42 patients had castrate resistant prostate cancer at the time of autopsy, defined by the presence of a rising serum PSA following medical or surgical castration. All patients' tissues were obtained at autopsy under University of Washington Medical Center Prostate Cancer Donor Rapid Autopsy Program.</p

    The heterogeneity of AR expression in individual patients.

    No full text
    <p>Multiple metastatic sites of 42 CRPC patients had been analyzed by IHC using 2 AR antibodies. The staining results were summarized as N+C+ (blue), N+C↓ (orange) and N-C- (red). LN = lymph node; L =  lumbar vertebra; R. =  right; L. =  left; T =  thoracic vertebra.</p

    Cabozantinib attenuates bone responses to tumor and increases normal bone volume in tumor unaffected areas.

    No full text
    <p>A. LuCaP 23.1 and C4-2B cell growth in tibiae causes large increases in trabecular bone volume. µCT images show that cabozantinib alleviates the bone response to both tumors. In LuCaP 23.1 tumored tibiae cabozantinib caused decreases in BV, while increases in BV were detected in C4-2B tumored tibiae of cabozantinib-treated animals vs control-tumored tibiae. The overall effects are combination of abolishment of tumor effects on the bone as well as cabozantinib effects on normal bone. Details of the effects are provided in Table 1. B. Analysis of non-tumored contralateral tibiae of the experimental animals shows that treatment with cabozantinib results in increased bone volume in both intact and castrated male mice. C. <i>In </i><i>vitro</i>, cabozantinib treatment inhibits proliferation of MC3T3 pre-osteoblast cells in a concentration-dependent manner, while promoting ALP activity and mineralization. Fold change in cells response measures was estimated from a single experiment that was repeated three times, and association with cabozantinib concentration was quantified and tested using linear regression models.</p

    A. A lower dose of cabozantinib at 30 mg/kg also inhibits tumor progression as demonstrated by decreases in serum PSA in animals bearing LuCaP 23.1 tumors in the tibiae.

    No full text
    <p>The lower dose was well tolerated for 6 weeks of treatment with no significant body weight loss. Prolonged treatment (7–15 weeks) caused 7–11% body weight decreases which were, however, statistically significant (P=0.0002-0.04). Significance of the changes was determined by comparing enrollment BW to BW at each week using 2-sided t-test. Mean ± SEM is plotted. B. Cabozantinib treatment (60 mg/kg) inhibited tumor growth of subcutaneous castration-resistant C4-2B tumors as determined by TV and serum PSA levels. This treatment also significantly increases survival as determined by log-rank test. C4-2B tumor growth causes decreases of BW in the experimental animals (4–13%, P= 0.0001-0.003), and the cabozantinib treatment prevents this effect resulting in no significant BW loss. Significance of the changes was determined by comparing enrollment BW to BW at each week using 2-sided t-test. Mean ± SEM of the group is plotted. </p

    Expression of MET, P-MET, and VEGFR2 in primary and metastatic patient samples.

    No full text
    <p>IHC and analyses were performed as described in the Methods section. Graphical profiles illustrating distributions of staining intensity were constructed by calculating simple averages across all non-missing sections in each staining category. In each site, the mean staining index is marked by a filled orange circle and orange bars represent 95% CIs. Representative examples of staining are shown for each protein. A. MET is strongly expressed in both primary and metastatic PCa, though it is significantly increased in BM and decreased in soft tissue metastases vs. primary PCa. B. P-MET levels are higher in BM, LN and other soft tissue metastases, while no alteration was detected in liver metastases when compared to primary PCa. C. VEGFR2 expression is significantly increased across PCa metastatic lesions as compared to primary PCa. Images were taken at 400 x magnification.</p
    corecore