88 research outputs found

    Cost-effective priorities for the expansion of global terrestrial protected areas: Setting 2 post-2020 global and national targets

    Get PDF
    Biodiversity loss is a social and ecological emergency, and calls have been made for the global expansion of protected areas (PAs) to tackle this crisis. It is unclear, however, where best to locate new PAs to protect biodiversity cost-effectively. To answer this question, we conducted a spatial meta-analysis by overlaying seven global biodiversity templates to identify Conservation Priority Zones (CPZs). These are then combined with Low Human Impact Areas (LIAs) to identify Cost-Effective Zones for PA designation (CEZs). CEZs cover around 38% of global terrestrial area, of which only 24% is currently covered by existing PAs. To protect more CEZs, we propose three scenarios with conservative, moderate and ambitious targets, which aim to protect 19%, 26% and 43% of global terrestrial area, respectively. These three targets are set for each Convention on Biological Diversity (CBD) party with spatially-explicit CEZs identified, providing valuable decision support for the post-2020 global biodiversity framework

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Dual Crosslinked Gelatin Methacryloyl Hydrogels for Photolithography and 3D Printing

    No full text
    Gelatin methacryloyl (GelMA) hydrogels have been used in tissue engineering and regenerative medicine because of their biocompatibility, photopatternability, printability, and tunable mechanical and rheological properties. However, low mechanical strength limits their applications in controlled drug release, non-viral gene therapy, and tissue and disease modeling. In this work, a dual crosslinking method for GelMA is introduced. First, photolithography was used to pattern the gels through the crosslinking of methacrylate incorporated amine groups of GelMA. Second, a microbial transglutaminase (mTGase) solution was introduced in order to enzymatically crosslink the photopatterned gels by initiating a chemical reaction between the glutamine and lysine groups of the GelMA hydrogel. The results showed that dual crosslinking improved the stiffness and rheological properties of the hydrogels without affecting cell viability, when compared to single crosslinking with either ultraviolet (UV) exposure or mTGase treatment. Our results also demonstrate that when treated with mTGase, hydrogels show decreased swelling properties and better preservation of photolithographically patterned shapes. Similar effects were observed when three dimensional (3D) printed and photocrosslinked substrates were treated with mTGase. Such dual crosslinking methods can be used to improve the mechanical properties and pattern fidelity of GelMA gels, as well as dynamic control of the stiffness of tissue engineered constructs

    Global Bibliometric Developments on Solid Waste Recycling in Concrete Construction Engineering

    No full text
    The precise and visual analysis of solid waste recycling in concrete construction engineering is critical for the development of ecological civilization and for the secure supply of resources. This research makes a bibliometric analysis of the solid waste application in concrete construction engineering from 2000 to 2021 based on the Web of Science. The global bibliometric status, current research focus and future directions were used to indicate the global development of solid waste recycling in concrete construction engineering. The most reused solid wastes and most solid waste productive regions were concluded with this bibliometric analysis. China is far ahead of other countries in solid waste recycling in all aspects and heavy metal is one of the most prominent solid waste themes in China. By analyzing the most studied solid waste, fly ash appears to be the most popular and is widely used; half of the top ten-cited papers are correlated with it

    Cetuximab-conjugated perfluorohexane/gold nanoparticles for low intensity focused ultrasound diagnosis ablation of thyroid cancer treatment

    No full text
    We report the formulation of nanoassemblies (NAs) comprising C225 conjugates Au-PFH-NAs (C-Au-PFH-NAs) for low-intensity focused ultrasound diagnosis ablation of thyroid cancer. C-Au-PFH-NAs showed excellent stability in water, phosphate-buffered saline (PBS), and 20% rat serum. Transmission electron microscopy (TEM) images also revealed the effective construction of C-Au-PFH-NAs as common spherical assemblies. The incubation of C625 thyroid carcinoma with C-Au-PFH-NAs triggers apoptosis, as confirmed by flow cytometry analysis. The C-Au-PFH-NAs exhibited antitumour efficacy in human thyroid carcinoma xenografts, where histopathological results further confirmed these outcomes. Furthermore, we were able to use low-intensity focused ultrasound diagnosis imaging (LIFUS) to examine the efficiency of C-Au-PFH-NAs in thyroid carcinoma in vivo. These findings clearly show that the use of LIFUS agents with high-performance imaging in different therapeutic settings will have extensive potential for future biomedical applications

    Coal Burst Prevention Technology and Engineering Practice in Ordos Deep Mining Area of China

    No full text
    With the coal mines in western China entering the field of deep mining, the problem of coal burst is becoming more and more serious. According to the characteristics of deep mining, it is an urgent problem that requires the development of an efficient and reasonable coal burst prevention and control plan to guide project practices. This study takes the typical deep mining area in Ordos as the research background, according to the stress state of the coal mining area and the load form of induced coal burst, which, in Ordos deep mining, is divided into the typical and atypical type. The former is caused by the superposition of high in situ stress and strong mining-induced stress, while the latter is due to the combination of high in situ stress, strong mining-induced stress, and external stress disturbances. Combined with theoretical analysis, numerical simulation, and field measurement, it is shown that the stress level of the Ordos deep mining area is higher than that of the shallow original rock, and the difference of the three-dimensional stress between coal and rock mass is greater. The concentration degree and influence range of mining-induced stress obviously increase. Coal and rock mass are more prone to instability and failure due to external disturbances. Based on the stress control theory, the prevention and control strategies of coal burst in different types of deep mining are put forward. In addition, the prevention and control technology system of coal burst in the Ordos deep mining area is established. The field engineering practice has been carried out to realize the efficient prevention and control of coal burst

    A Protected Area Connectivity Evaluation and Strategy Development Framework for Post-2020 Biodiversity Conservation

    No full text
    Maintaining and improving the connectivity of protected areas (PAs) is essential for biodiversity conservation. The Post-2020 Global Biodiversity Framework (GBF) aims to expand the coverage of well-connected PAs and other effective area-based conservation measures to 30% by 2030. We proposed a framework to evaluate the connectivity of PAs and developed strategies to maintain and improve the connectivity of PAs based on PA connectivity indicators, and we applied this framework to China’s terrestrial PAs. We considered that the concept of PA connectivity is at the level of both PA patches and PA networks, including four aspects: intra-patch connectivity, inter-patch connectivity, network connectivity, and PA–landscape connectivity. We found that among China’s 2153 terrestrial PA patches, only 427 had good intra-patch connectivity, and their total area accounted for 11.28% of China’s land area. If inter-patch connectivity, network connectivity, and PA–landscape connectivity were taken as the criteria to evaluate PA connectivity, respectively, then the coverage of well-connected terrestrial PAs in China was only 4.07%, 8.30%, and 5.92%, respectively. Only seven PA patches have good connectivity of all four aspects, covering only 2.69% of China’s land. The intra-patch, inter-patch, network, and PA–landscape connectivity of China’s terrestrial PA network reached 93.41%, 35.40%, 58.43%, and 8.58%, respectively. These conclusions indicated that there is still a big gap between China’s PA connectivity and the Post-2020 GBF target, which urgently needs to be improved. We identified PA patches and PA networks of ecological zones that need to improve PA connectivity and identified improvement priorities for them. We also identified priority areas for connectivity restoration in existing PAs, potential ecological corridors between PAs, and priority areas for PA expansion to improve the connectivity of PAs in China. Application of our framework elsewhere should help governments and policymakers reach ambitious biodiversity conservation goals at national and global scales

    Quantitative Proteomic and Phosphoproteomic Comparison of 2D and 3D Colon Cancer Cell Culture Models

    No full text
    Cell cultures are widely used model systems. Some immortalized cell lines can be grown in either two-dimensional (2D) adherent monolayers or in three-dimensional (3D) multicellular aggregates, or spheroids. Here, the quantitative proteome and phosphoproteome of colon carcinoma HT29 cells cultures in 2D monolayers and 3D spheroids were compared with a stable isotope labeling of amino acids (SILAC) labeling strategy. Two biological replicates from each sample were examined, and notable differences in both the proteome and the phosphoproteome were determined by nanoliquid chromatography tandem mass spectrometry (LC–MS/MS) to assess how growth configuration affects molecular expression. A total of 5867 protein groups, including 2523 phosphoprotein groups and 8733 phosphopeptides were identified in the samples. The Gene Ontology analysis revealed enriched GO terms in the 3D samples for RNA binding, nucleic acid binding, enzyme binding, cytoskeletal protein binding, and histone binding for their molecular functions (MF) and in the process of cell cycle, cytoskeleton organization, and DNA metabolic process for the biological process (BP). The KEGG pathway analysis indicated that 3D cultures are enriched for oxidative phosphorylation pathways, metabolic pathways, peroxisome pathways, and biosynthesis of amino acids. In contrast, analysis of the phosphoproteomes indicated that 3D cultures have decreased phosphorylation correlating with slower growth rates and lower cell-to-extracellular matrix interactions. In sum, these results provide quantitative assessments of the effects on the proteome and phosphoproteome of culturing cells in 2D versus 3D cell culture configurations
    • …
    corecore