43 research outputs found

    Milligram Production and Biological Activity Characterization of the Human Chemokine Receptor CCR3

    Get PDF
    <div><p>Human chemokine receptor CCR3 (hCCR3) belongs to the G protein-coupled receptors (GPCRs) superfamily of membrane proteins and plays major roles in allergic diseases and angiogenesis. In order to study the structural and functional mechanism of hCCR3, it is essential to produce pure protein with biological functions on a milligram scale. Here we report the expression of hCCR3 gene in a tetracycline-inducible stable mammalian cell line. A cell clone with high hCCR3 expression was selected from 46 stably transfected cell clones and from this cell line pure hCCR3 on a milligram scale was obtained after two-step purification. Circular dichroism spectrum with a characteristic shape and magnitude for α-helix indicated proper folding of hCCR3 after purification. The biological activity of purified hCCR3 was verified by its high binding affinity with its endogenous ligands CCL11 and CCL24, with <i>K</i><sub>D</sub> in the range of 10<sup>−8</sup> M to 10<sup>−6</sup> M.</p></div

    Copper-Catalyzed Aerobic Oxidative Intramolecular C–H Amination Leading to Imidazobenzimidazole Derivatives

    No full text
    A highly efficient copper-catalyzed aerobic oxidative intramolecular C–H amination has been developed using substituted 2-(1<i>H</i>-imidazol-1-yl)-<i>N</i>-alkylbenzenamines as the starting materials, and the corresponding imidazobenzimidazole derivatives were obtained in excellent yields. This is an economical and practical method for the construction of <i>N</i>-heterocycles

    Table_2_NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae.xls

    No full text
    Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it’s negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.</p

    Table_3_NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae.docx

    No full text
    Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it’s negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.</p

    The Superior Performance of Sol–Gel Made Ce–O–P Catalyst for Selective Catalytic Reduction of NO with NH<sub>3</sub>

    No full text
    In this paper, a sol–gel made Ce–O–P catalyst (referred to as Ce–O–P-SG) was employed for selective catalytic reduction (SCR) of NO<sub><i>x</i></sub> with NH<sub>3</sub>, which was directly compared with two other Ce–O–P samples as synthesized via hydrothermal and coprecipitation routes (referred to as Ce–O–P-HT and Ce–O–P-CP, respectively). Experimental results revealed that the Ce–O–P-SG catalyst yielded a more than 90% NO conversion at 200 °C in the presence of 10 vol % H<sub>2</sub>O, whereas Ce–O–P-HT and Ce–O–P-CP catalysts only showed 50% and 20% NO conversions under the same conditions, respectively. After subjected to a series of characterization technologies (e.g., XRD, BET-BJH, XPS, NH<sub>3</sub>-TPD, py-IR, and H<sub>2</sub>-TPR), it was found that more enriched surface Ce­(4+) species were formed except for the two main CePO<sub>4</sub> phases (monazite and rhabdophane phases) of the Ce–O–P-SG catalyst compared to the other two samples, resulting in the increase of surficial active oxygen ions content. This could lead to an enhancement in surface acidity and redox capacity of the Ce–O–P-SG catalyst, effectively promoting the NH<sub>3</sub>–SCR activity of the catalyst. Further analyses on SO<sub>2</sub> and H<sub>2</sub>O tolerance revealed that the Ce–O–P-SG possessed a higher sulfur resistance than the other two samples, which could be attributed to the SO<sub>2</sub> trapping effect by the abundant active oxygen species over Ce–O–P-SG catalyst

    DataSheet_1_NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae.docx

    No full text
    Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it’s negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.</p

    De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of <i>Cyclocarya Paliurus</i> (Bata1) Iljinskaja

    No full text
    <div><p><i>Cyclocarya Paliurus</i> (Bata1) Iljinskaja contains various bioactive secondary metabolites especially in leaves, such as triterpenes, flavonoids, polysaccharides and alkaloids, and its leaves are widely used as an hyperglycemic tea in China. In the present paper, we sequenced the transcriptome of the leaves and callus of <i>Cyclocarya Paliurus</i> using Illumina Hiseq 4000 platform. After sequencing and de novo assembly, a total of 65,654 unigenes were generated with an N50 length of 1,244bp. Among them, 35,041 (53.37%) unigenes were annotated in NCBI Non-Redundant database, 19,453 (29.63%) unigenes were classified into Gene Ontology (GO) database, and 7,259 (11.06%) unigenes were assigned to Clusters of Orthologous Group (COG) categories. Furthermore, 11,697 (17.81%) unigenes were mapped onto 335 pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG), among which 1,312 unigenes were identified to be involved in biosynthesis of secondary metabolites. In addition, a total of 11,247 putative simple sequence repeats (SSRs) were detected. This transcriptome dataset provides a comprehensive sequence resource for gene expression profiling, genetic diversity, evolution and further molecular genetics research on <i>Cyclocarya Paliurus</i>.</p></div

    Table_4_NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae.xls

    No full text
    Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it’s negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.</p

    Table_1_NtbHLH49, a jasmonate-regulated transcription factor, negatively regulates tobacco responses to Phytophthora nicotianae.docx

    No full text
    Tobacco black shank caused by Phytophthora nicotianae is a devastating disease that causes huge losses to tobacco production across the world. Investigating the regulatory mechanism of tobacco resistance to P. nicotianae is of great importance for tobacco resistance breeding. The jasmonate (JA) signaling pathway plays a pivotal role in modulating plant pathogen resistance, but the mechanism underlying JA-mediated tobacco resistance to P. nicotianae remains largely unclear. This work explored the P. nicotianae responses of common tobacco cultivar TN90 using plants with RNAi-mediated silencing of NtCOI1 (encoding the perception protein of JA signal), and identified genes involved in this process by comparative transcriptome analyses. Interestingly, the majority of the differentially expressed bHLH transcription factor genes, whose homologs are correlated with JA-signaling, encode AtBPE-like regulators and were up-regulated in NtCOI1-RI plants, implying a negative role in regulating tobacco response to P. nicotianae. A subsequent study on NtbHLH49, a member of this group, showed that it’s negatively regulated by JA treatment or P. nicotianae infection, and its protein was localized to the nucleus. Furthermore, overexpression of NtbHLH49 decreased tobacco resistance to P. nicotianae, while knockdown of its expression increased the resistance. Manipulation of NtbHLH49 expression also altered the expression of a set of pathogen resistance genes. This study identified a set of genes correlated with JA-mediated tobacco response to P. nicotianae, and revealed the function of AtBPE-like regulator NtbHLH49 in regulating tobacco resistance to this pathogen, providing insights into the JA-mediated tobacco responses to P. nicotianae.</p

    The top 20 largest KEGG pathways.

    No full text
    <p>Annotated unigenes were classified into 335 KEGG pathways. The top 20 pathways containing unigenes are displayed.</p
    corecore