265 research outputs found

    Answer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering

    Full text link
    In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.Comment: 6 page

    Infinite families of cyclic and negacyclic codes supporting 3-designs

    Full text link
    Interplay between coding theory and combinatorial tt-designs has been a hot topic for many years for combinatorialists and coding theorists. Some infinite families of cyclic codes supporting infinite families of 33-designs have been constructed in the past 50 years. However, no infinite family of negacyclic codes supporting an infinite family of 33-designs has been reported in the literature. This is the main motivation of this paper. Let q=pmq=p^m, where pp is an odd prime and m2m \geq 2 is an integer. The objective of this paper is to present an infinite family of cyclic codes over \gf(q) supporting an infinite family of 33-designs and two infinite families of negacyclic codes over \gf(q^2) supporting two infinite families of 33-designs. The parameters and the weight distributions of these codes are determined. The subfield subcodes of these negacyclic codes over \gf(q) are studied. Three infinite families of almost MDS codes are also presented. A constacyclic code over GF(44) supporting a 44-design and six open problems are also presented in this paper

    Distributed Multi-authority Attribute-based Encryption Scheme for Friend Discovery in Mobile Social Networks

    Get PDF
    AbstractIn recent years, the rapid expansion of the capability of portable devices, cloud servers and cellular network technologies is the wind beneath the wing of mobile social networks. Compared to traditional web-based online social networks, the mobile social networks can assist users to easily discover and make new social interaction with others. A challenging task is to protect the privacy of the users’ profiles and communications. Existing works are mainly based on traditional cryptographic methods, such as homomorphic and group signatures, which are very computationally costly. In this paper, we propose a novel distributed multi-authority attribute-based encryption scheme to efficiently achieve privacy-preserving without additional special signatures. In addition, the proposed scheme can achieve fine-grained and flexible access control. Detailed analysis demonstrates the effectiveness and practicability of our scheme

    3,9-Di-tert-butyl-2,4,8,10-tetra­oxaspiro­[5.5]undeca­ne

    Get PDF
    The title compound, C15H28O4, was prepared by the condensation of pivalaldehyde with penta­erythritol. In the crystal, the two halves of the mol­ecule are related by a crystallographic twofold rotation axis passing through the central spiro-C atom. The two non-planar six-membered heterocycles both adopt chair conformations with the two tert-butyl groups both located in the equatorial positions

    Sirtuins and Insulin Resistance

    Get PDF
    The mammalian Sirtuins (SIRT1-7) are an evolutionarily conserved family of NAD+-dependent deacylase and mono-ADP-ribosyltransferase. Sirtuins display distinct subcellular localizations and functions and are involved in cell survival, senescence, metabolism and genome stability. Among the mammalian Sirtuins, SIRT1 and SIRT6 have been thoroughly investigated and have prominent metabolic regulatory roles. Moreover, SIRT1 and SIRT6 have been implicated in obesity, insulin resistance, type 2 diabetes mellitus (T2DM), fatty liver disease and cardiovascular diseases. However, the roles of other Sirtuins are not fully understood. Recent studies have shown that these Sirtuins also play important roles in inflammation, mitochondrial dysfunction, and energy metabolism. Insulin resistance is the critical pathological trait of obesity and metabolic syndrome as well as the core defect in T2DM. Accumulating clinical and experimental animal evidence suggests the potential roles of the remaining Sirtuins in the regulation of insulin resistance through diverse biological mechanisms. In this review, we summarize recent advances in the understanding of the functions of Sirtuins in various insulin resistance-associated physiological processes, including inflammation, mitochondrial dysfunction, the insulin signaling pathway, glucose, and lipid metabolism. In addition, we highlight the important gaps that must be addressed in this field

    Tetraodon nigroviridis as a nonlethal model of infectious spleen and kidney necrosis virus (ISKNV) infection

    Get PDF
    AbstractInfectious spleen and kidney necrosis virus (ISKNV) is the type species of the genus Megalocytivirus, family Iridoviridae. We have previously established a high mortality ISKNV infection model of zebrafish (Danio rerio). In this study, a nonlethal Tetraodon nigroviridis model of ISKNV infection was established. ISKNV infection did not cause lethal disease in Tetraodon but could infect almost all the organs of this species. Electron microscopy showed ISKNV particles were present in infected tissues. Immunofluorescence and quantitative real-time PCR analysis showed that nearly all the virions and infected cells were cleared at 14d postinfection. The expression profiles of interferon-γ and tumor necrosis factor-α gene in response to ISKNV infection were significantly different in Tetraodon and zebrafish. The establishment of the nonlethal Tetraodon model of ISKNV infection can offer a valuable tool complementary to the zebrafish infection model for studying megalocytivirus disease, fish immune systems, and viral tropism

    Glycyrrhizin Attenuates Salmonella enterica Serovar Typhimurium Infection: New Insights Into Its Protective Mechanism

    Get PDF
    Glycyrrhizin (GL), a triterpenoid glycoside, serves important functions in various biological activities, including antiviral and antitumor immune responses. However, the anti-inflammatory effects of GL on Salmonella enterica serovar Typhimurium (ST)-induced injury in mice and the mechanisms underlying the protection of GL are poorly understood. Here, we investigated the effects of GL on host immune responses against ST infection in mice. A phenotypic analysis using hematoxylin and eosin (H&E) staining and transmission electron microscopy showed that GL relieved ST-induced weight loss and intestinal mucosal injury. A colonization assay showed that GL significantly reduced ST colonization in the ileum and colon and translocation to the liver and spleen. An antibacterial activity assay and real-time PCR revealed that GL had no direct inhibitory impact on ST growth or virulence gene expression. ELISA showed that GL pretreatment significantly decreased proinflammatory cytokine (IFN-γ, TNF-α, IL-6) secretion and increased anti-inflammatory cytokine (IL-10) secretion in the ileum, colon and serum of ST-infected mice. Moreover, flora analysis showed that GL reduced Akkermansia, Sutterella, Prevotella and Coprococcus but enriched Parabacteroides and Anaerotruncus in the cecum of ST-infected mice. These results suggest that GL promotes the secretion of immune factors and modulates intestinal flora to prevent further ST infection. We also analyzed the effect of GL on immunocytes and found that GL promoted the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (BMDCs). Flow cytometry and western blotting demonstrated that NF-κB, ERK, and p38 MAPK were required for GL-induced BMDC maturation. The above findings indicate that GL attenuates ST infection by modulating immune function and intestinal flora. This study enriches our current knowledge of GL-mediated immunological function and provides a new perspective on the prevention of Salmonella infection in animals and humans
    corecore