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Abstract
In recent years, the rapid expansion of the capability of portable devices, cloud servers and
cellular network technologies is the wind beneath the wing of mobile social networks. Compared
to traditional web-based online social networks, the mobile social networks can assist users to
easily discover and make new social interaction with others. A challenging task is to protect
the privacy of the users’ profiles and communications. Existing works are mainly based on
traditional cryptographic methods, such as homomorphic and group signatures, which are very
computationally costly. In this paper, we propose a novel distributed multi-authority attribute-
based encryption scheme to efficiently achieve privacy-preserving without additional special
signatures. In addition, the proposed scheme can achieve fine-grained and flexible access control.
Detailed analysis demonstrates the effectiveness and practicability of our scheme.

Keywords: Multi-authority, Attribute-based Encryption, Privacy Preserving, Access Control, Profile

Matching

1 Introduction

A boom in mobile hand-held devices greatly enriches the social networking application [1].
Many social networking services are available on the mobile devices (e.g., WeChat, QQ, Mo-
coSpace, etc.). According to eMarketer [2], they estimate that the number of US smartphone
users will reach 192.4 million by 2016 and 2.28 billion worldwide [3]. Friend discovery and
communication are two important basic steps of social networks. When people take part in so-
cial networks, they usually begin by creating a profile, then interact with others. The personal
profile usually contains a large amount information, such as hobbies, age, education degree, etc.
Profile matching is a common and helpful method to make new friend with mutual interests or
experience. Unfortunately, a series of unaddressed security and privacy problems dramatically
impede its practicability and popularity [4].
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In recent years, many private matching schemes have been proposed to solve this prob-
lem. Among these schemes, some protect user’s privacy based on trusted third party (TTP)
[5, 6, 7, 8], the other is TTP-free [9, 10, 1]. Although, this kind of approaches can achieve
profile matching without the support of TTP, they have some disadvantages. The reliance on
public-key crytosytem and homomorphic encryption [11, 12, 7, 8] requires multiple rounds of
interaction which causes high communication and computation overhead. Moreover, matched
and unmatched users are all involved in the expensive computation and learn the matching
result. Li et al. [9] propose a private matching scheme based on the common interests, which
is not fine-grained. Zhang et al. [8] present a fine-grained private matching scheme but fail in
considering the priority related to every attribute and they employ the homomorphic encryption
which is resource consuming on mobile devices. Qi et al. [10] employ an asymmetric-scalar-
production based on kNN query, but the presentation of interests is too single to get an accurate
result. Moreover, the widely used technique of group signature [13][14] always costs huge vol-
ume of computational resources on users’ hand-held devices, and the access control based on the
key-policy attribute-based encryption [15] is not efficient enough. In addition, if any server or
TTP is compromised, the confidentiality of the stored data may be compromised, too. There-
fore, considering the powerful computationanl as well as storage ability of the TTP and cloud
server, the main point of our work is to design an efficient privacy-preserving and fine-grained
friend discovery system based on the combination of TTP and cloud server.

In this paper, we propose an efficient destributed multi-authority attribute-based encryp-
tion scheme, which can achieve privacy preserving and fine-grained access control. By using
ciphertext-policy attribute-based encryption (CP-ABE) [16], the encrypted information can
kept confidential even if the storage server is not fully-trusted and users can design the their
own access policy. Hence, the fine-grained access control can be achieved efficiently. By employ-
ing the powerful storage and computational ability of cloud server, the storage and computaion
overhead of the client can be greatly reduced. The multi-authorities are designed to be de-
stributed, which can significantly relieves the users’ trust on a single authority and is secure
against collusion attack as well as chosen-plaintext attack. The main contributions are outlined
as follows.

• A multi-authority attribute-based encryption scheme is proposed for fine-grained multi-
level access control in cloud friend discovery system. Users can design their own access
policy to find the potential friends, which is user friendly.

• User’s identity and personal profile are encrypted under the access policy specified by the
user himself and outsourced to the cloud server, the client is lightweight.

• The destributed multi-authority model in friend discovery cloud computing system also
reduces the risk of a single central authority being compromised for potential privacy
leakage.

• Formal security proof and simulation evaluation demonstrate that our scheme is secure
against chosen-plaintext attack and collusion attack in the standard model.

The remainder of this paper is organized as follows. Preliminaries are introduced in Section
2. The system architecture and models are presented in Section 3. We propose our scheme
in Section 4, followed by the formal security proof and performance evaluations respectively in
Section 5 and 6. Finally, we conclude our work.
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2 System Architecture and Models

2.1 System Architecture

The architecture of the friend discovery system mainly contains the following components: the
personal profile which is outsourced in the encrypted form into the cloud by the initiator;
the cloud server that stores huge volumes of users’ personal profiles and performs the efficient
attribute matching process to realize the multi-level fine-grained access control for privacy
preserving; the responders who will attend the profile matching and may be the potential
friend. Moreover, in our system, there are also D central authorities (CA1, CA2,..., CAD) and
K attribute authorities (AA1,..., AAk). Each responder has a global identifier gid ∈ GID,
where the GID is the identity set of all registered users. Responders get the keys concerning
their unique gid from CAi (i ∈ 1, 2, ..., D). Each attribute authority AAk (k ∈ 1, 2, ...,K)
manages a set of attributes Uk(Ui ∩ Uj = ∅ ∧ U = ∪K

k=1Uk) (i, j ∈ {1, 2, ...,K} ∧ i �= j). Each
authorized responder with attribute set ASgid will obtain their attribute secret keys from the
corresponding AAks. We assume that all the authorities are run by different organizations and
governed by the government. The multiple authority setting greatly relieves the users’ trust on
a single CA or AA, so it is unlikely for all the authorities to collude (or to be compromised)
to derive the secret keys. Figure 1 illustrates the architecture of the cloud friend discovery
system.

Figure 1: Architecture of Cloud Friend Discovery System

2.2 Security Model

The formal security model of our proposed scheme is defined by the following game runs between
a challenger C and an adversary A.

Key query phase 1: The adversary A tries to query the following random oracles.
OCAKeyGen(gid,i): A queries with gid and i∗, where gid is the global identity. It returns the

corresponding responder-identity-key (rpsk0gid,i, rpsk
1
gid,i) and rppkgid,i.

OAAKeyGen(att,rppkgid,i,k): A queries with rppkgid,i, att and k, where att is the attribute in
Uk. If the submitted pcpkgid,i is illegal, it returns ⊗; otherwise, it returns rask0gid,i.
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Challenge phase: A submits two equal length message m0, m1 and access policy A
∗. The

challenger flips a random coin b ∈ {0, 1} and encrypts mb under A
∗. The ciphertext CT ∗ is

given to A.
Key query phase 2: A is once again to repeat the steps in Key query phase 1.
Guess: the adversary A outputs a guess b′ of b.
The advantage that an adversary A wins this game is Adv(λ) = |Pr[b′ = b] − 1

2 |. The
proposed scheme is secure if for any polynomial time, the advantage Adv(λ) is negligible.

2.3 Adversary Model and Design Goal

In the profile matching process, there usually exists two main adversary models: In the honest-
but-curious (HBC) model [17], an attacker honestly follows the protocol but tries to get more
information from the received message than allowed. In this paper, we suppose all the author-
ities and users are honest-but-curious. In malicious model [18], an attacker tries to learn more
information using background knowledge beyond his/her received message or by deliberately
deviating from the protocol.

The main goal as well as the great challenge of our scheme is to conduct efficient matching
against the chosen-plaintext attack and collusion attack.

3 Proposed Scheme

In this section, we will propose a piecewise multi-authority CP-ABE scheme. It mainly consists
of the following phases: system initialization, key generation, information encryption, profile
matching and decryption.

3.1 System Initialization

GlobalInit: On input 1λ, where λ is the security parameter, this algorithm outputs the global
public parameterGPRA. G is a bilinear cyclic group with the orderN = p1p2p3, where p1, p2, p3
are distinct big prime numbers. Gpi is the subgroup of G with order pi, g is the generator of
Gp1 and X3 is the generator of Gp3. Randomly choose h∈RGp1

. Finally, the global public
parameter is published as GPRA = {N, g, h,X3,Σsig}, where Σsig = {KeyGen, Sign, V erify}
is the secure signature scheme against chosen-plaintext attack.

CASetup: On input GPRA, this algorithm outputs CAi’s public parameter CAPARi,
public key CAPKi and master key CAMSKi. First of all, each CAi runs the algorithm
KeyGen in the Σsig to generate a pair of secret key and public key < ski, pki >. CAi randomly
chooses αi, ai∈RZN to generate master secret key CAMSKi = (αi, ai, ski) and empty table Ti,
then publishes the public parameter CAPARi = (e(g, g)αi , gai) and public key CAPKi = pki.

AASetup: This algorithm takes GPRA, AAk’s index k and the attribute universe Uk be-
longing to AAk as input, and outputs master secret key AAMSKk, public parameter AAPRAk

and public key AAPKk. For each att in Uk, AAk randomly selects satt∈RZN and vk,i∈RZN ,
then computes Tatt = gsatt and Vk,i = gvk,i . Finally, AAi sets its master secret key AAMSKk =
(vk,i, {satt |att ∈ Uk }), and publishes the public parameter AAPARk = ({Tatt |att ∈ Uk }) and
public key AAPKk = Vk,i.

3.2 Key Generation

In this phase, a responder submits his/her information to request the public and secret keys.
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3.2.1 CA key Generation

In this step, responder registers his/her gid to CAi for requesting the responder-identity keys
and finally the rppkgid,i is published. The detailed procedure is shown in Algorithm 1.

Algorithm 1: Responder-identity-Keys Generation

Input: responder’s identifier gid
Output: responder’s signature σgid,i, public key rppkgid,i, a pair of secret keys

< rpsk0gid,i, rpsk
1
gid,i >

1 randomly select ci ∈ Z
∗
N , rgid,i ∈ ZN , Rgid,i, R

′
gid,i, R

′′
gid,i ∈ Gp3

;

2 compute: rpsk′gid,i = ci, Lgid,i = g
rgid,i
gid,i R

′
gid,i, L

′
gid,i = (gai)rgid,iR′′

gid,i, μ
0
i = αu,i,

μ1
i = αi − αu,i;

3 for j from 0 to 1 do

4 compute rpskjgid,i = g
μ
j
i

ai+ci h
rgid,i
gid,i Rgid,i;

5 end
6 for k from 1 to K do
7 randomly choose Rgid,k,i from Gp3;

8 compute Γgid,k,i = V
(ai+ci)rgid,i
k,i Rgid,k,i;

9 end

10 generate σgid,i = Sigski
(gid||Lgid,i||L′

gid,i|| ∪K
k=1 Γgid,k,i) and

rppkgid,i = (gid, Lgid,i, L
′
gid,i, {Γgid,k,i}, σgid,i);

11 add (ci, gid) to Ti;
12 return σgid,i, rppkgid,i, < rpsk0gid,i, rpsk

1
gid,i >

3.2.2 AA key Generation

When a responder submits his/her keys to AAk for the secret key concerning some attribute
att ∈ Uk in his/her attribute set ASgid. The authorities first will verify the identity of the
responder according to the formula:

V ALID
?←
{

e(g,Γgid,k,i)
?
= e(Vk,i, L

′
gid,iL

rpsk′
gid,i

gid,i )

V erifypki(gid||Lgid,i||L′
gid,i|| ∪K

k=1 Γgid,k,i, σgid,i)
(1)

If it fails to pass one of the verification, AAk outputs ⊗ which means that the responder is
invalid and the system will end the whole procedure.

If the verification is correct, AAk will run the Algorithm 2 to generate raskgid,i. After
running the algorithm, AAk transmits ASgid to the cloud server to find a matcher.

3.3 Encryption

This algorithm is performed on the initiator’s hand-held device. Suppose the initiator’s real
identity is ID, the personal profile is mprofile, the symmetric identity encryption key is Kid, the
personal profile encryption key is Kprofile, the access policy is A = (A, ρ), the secure symmetric
encryptions are EKid

(·) and EKprofile
(·). The access policy is defined by a LSSS matrix (A, ρ),

where A is a l × n matrix and ρ will map each row Ax in A to get an attribute ρ(x). ρ is
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Algorithm 2: Attribute Key Generation

Input: responder’s identifier gid, attribute att
Output: the attribute secret key raskgid,i

1 randomly select R′
att,gid ∈ Gpi

;

2 for i from 1 to D do
3 for ∀att ∈ Uk ∩ ASgid do

4 compute paskatt,gid,i = (Γgid,k,i)
satt/vk,iR′

att,gid = T
(ai+ci)rgid,i
att R

satt,i/vk,i

gid,k,i R′
att,gid;

5 set Ratt,gid,i = R
satt/vk,i

gid,k,i R′
att,gid;

6 paskatt,gid,i is denoted as T
(ai+ci)rgid,i
att Ratt,gid,i;

7 end

8 end
9 generate raskgid,i = {raskatt,gid,i|att ∈ ASgid};

10 return raskgid,i

required that when mapping different row, the attribute must not be the same. The detailed
encryption procedure is shown in Algorithm 3.

Algorithm 3: Encryption

Input: ID, mprofile, Kid, Kprofile, GRPA, AAPARk, CAPARi, EKid
(·), EKprofile

(·)
Output: ciphertext: CA,ρ, CTid, CTprofile

1 choose a random vector �v = (s, v2, ..., vn) ∈ Zn
N ;

2 for x from 1 to l do
3 select a random number rx, where rx ∈ ZN ;

4 compute Cx = hAx·�vT−rx
ρ(x) ;

5 end
6 compute C ′ = g∗ and C ′′ = gais;
7 for sth in {id, profile} do

8 compute CTKsth
= Ksth

d∏
i=1

e(g, g)
αis

9 end
10 compute CTid = EKid

(ID) and CTprofile = EKprofile
(mprofile);

11 define CA,ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

CTKid
= Kid

d∏
i=1

e(g, g)
αis,

CTKprofile
= Kprofile

d∏
i=1

e(g, g)
αis,

{Cx = hAx·�vT−rx
ρ(x) , C

′
x = grx},

C ′ = gs,
C ′′ = gais

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x ∈ {1, 2, ..., l};

12 return CA,ρ, CTid, CTprofile
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3.4 Profile Matching and Decryption

First, the cloud server will help the responder find a matcher. If the responder’s attribute set
ASgid satisfies the access policy A = (A, ρ), which means there exists constants ωx ∈ ZN and∑

ρ(x)∈ASgid
ωxAx = (1, 0, ..., 0), then the cloud server transmits CA,ρ, CTid, CTprofile to the

responder. When receiving the ciphertexts, the responder runs Algorithm 4 to decrypt.

Algorithm 4: Decryption

Input: raskgid,i, μ
0
i , μ

1
i , CA,ρ, CTid, CTprofile, < rpsk0gid,i, rpsk

1
gid,i >, DKid

(·),
DKprofile

(·)
Output: initiator’s identity ID and personal profile mprofile

1 compute

⎧⎪⎪⎨
⎪⎪⎩

e((C′)rpsk
′
gid,iC′′

i,rpsk
0
gid,i)

Πρ(x)∈ASgid
(e(Cx,L

rpsk′
gid,i

gid,i )e(C′
x,raskρ(x),gid,i))

ωx

e((C′)rpsk
′
gid,iC′′

i,rpsk
1
gid,i)

Πρ(x)∈ASgid
(e(Cx,L

rpsk′
gid,i

gid,i )e(C′
x,raskρ(x),gid,i))

ωx

→
{

e(g, g)αu,i

e(g, g)(αu−αu,i)
;

2 for sth ∈ {id, profile} do

3 compute Ksth =
CTKsth

ΠD
i=1(e(g,g)

αu,ie(g,g)(αi−αu,i))

4 end
5 compute ID = DKid

(CTid), mprofile = DKprofile
(CTprofile), where DKid

(·) and
DKprofile

(·) are corresponding decryption algorithms of Kid and Kprofile;
6 return ID, mprofile

4 Security Analysis

In this section, we give security proof of our proposed scheme to achieve multi-authority privacy-
preserving friend discovery system. Suppose there exists an adversary A and a challenger C.

Definition 1. Our proposed scheme can achieve privacy-preserving if it is secure in the secu-
rity game in Section 2.2.

Lemma 1. Our proposed scheme achieves privacy against adversaries.

Proof. Suppose the adversary A can break our proposed scheme with advantage AdvA, then
the challenger C can break the underlying multi-authority CP-ABE scheme with the advantage
AdvC which equals to AdvA.

Setup: the multi-authority CP-ABE scheme gives C the public parameters GPK =
{N, g, h,X3,Σsig}, CPKi = e(g, g)αi , CAPKi = V erifyKeyi, APKk = ({Tatt |att ∈ Uk }),
ACPKk = Vk,i. C randomly selects ai ∈ ZN and gives A the following public parame-
ters GPRA = {N, g, h,X3,Σsig}, CAPARi = (e(g, g)αi , gai), CAPKi = pki, AAPARk =
({Tatt |att ∈ Uk }), AAPKk = Vk,i and Ti = ∅. Then, specifies the target uncorrupted CA
with index i∗ and a set of corrupted AAs. C inputs i∗ and gets CMSKi = {αi, SignKeyi},
AMSKk = (vk,i, {satt |att ∈ Uk }). Then C gives CAMSKi = (αi, ai, SingKeyi) and
AAMSKk = AMSKk to A.

Key query phase 1. (1) When A submits gid and i∗ to the random oracle OCAKeyGen

and C submits (gid, i∗) to the multi-authority CP-ABE scheme obtaining ucsk0,MA
gid,i∗ =
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gαu,i∗hrMA
gid,i∗Rgid,i∗ , ucsk

1,MA
gid,i∗ = gαi∗−αu,i∗hrMA

gid,i∗Rgid,i∗ , L
MA
gid,i∗ = gr

MA
gid,i∗R′

gid,i∗ and ΓMA
gid,k,i∗ =

V
rMA
gid,i∗

k,i∗ Rgid,k,i∗ . C randomly selects ci ∈ Z
∗
N , tgid,i∗ ∈ ZN , R′′ ∈ Gp3 and sets rgid,i∗ =

rMA
gid,i∗

(ai∗+ci∗ )
,

C computes the following parameters and sends them to A:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pcsk0gid,i∗ = (ucsk0,MA
gid,i∗ )

1
ai∗+ci∗ = g

α
u,i∗

ai∗+ci∗ hrgid,i∗R
1

ai∗+ci∗
gid,i∗

pcsk1gid,i∗ = (ucsk1,MA
gid,i∗ )

1
ai∗+ci∗ = g

α
i∗−α

u,i∗
ai∗+ci∗ hrgid,i∗R

1
ai∗+ci∗
gid,i∗

Γgid,k,i∗ = V
(ai∗+ci∗ )rgid,i∗
k,i∗ Rgid,k,i∗

pcsk′gid,i∗ = ci∗

Lgid,i∗ = grgid,i∗ (R′
gid,i∗)

1
ai∗+ci∗

L′
gid,i∗ = (gai∗ )rgid,i∗ (R′

gid,i∗)
ai∗

ai∗+ci∗ R′′

(2)

Then C adds (ci∗ , gid) to Ti.
(2) The adversary A submits (pcpkgid,d, k, att) to OAAKeyGen to obtain attribute key, C first

verifies:

V ALID
?←
{

e(g,Γgid,k,i∗)
?
= e(Vk,i∗ , L

′
gid,i∗L

pcsk′
gid,i∗

gid,i∗ )

V erifypki∗ (gid||Lgid,i∗ ||L′
gid,i∗ || ∪K

k=1 Γgid,k,i∗ , σgid,i∗)
(3)

If the verification is passed, C randomly chooses R′
att,gid ∈ Gpi and computes

paskatt,gid,i∗ = (Γgid,k,i∗)
satt/vk,i∗R′

att,gid = T
(ai∗+ci∗ )rgid,i∗
att Ratt,gid,i∗ (4)

where Ratt,gid,i∗ = R
satt/vk,i∗
gid,k,i∗ R′

att,gid. Finally, C transmits paskatt,gid,i∗ to A.
Challenge phase. The adversary A gives C the access policy A∗ = (A∗, ρ) and two

messages m0, m1 with the same length. Then C submits (A∗,m0,m1) to the multi-authority
CP-ABE scheme and gets the following ciphertexts:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
CTKsth

= mb

d∏
i=1

e(g, g)
αis(sth ∈ {id, profile})

C ′ = gs

C ′′ = gais

{Cx = hA∗
x�vT−rx

ρ(x) , C
′
x = grx}(x ∈ {1, 2, ..., l})

(5)

It is noted that the above operations are with the restriction that ASgidA cannot satisfy the
access policy A

∗.
Key query phase 2. A is once again to repeat the operations in Key query phase 1.
Guess. The adversary A outputs a guess b′ of b, and C submits b′ to the multi-authority

CP-ABE scheme.
From the above analysis, it is obviously that the distribution of parameters, keys and ci-

phertexts are the same as the real scheme, there we can get AdvC = AdvA.

5 Performance Analysis

In this section, we evaluate the proposed scheme with several existing works in terms of efficiency
and practicability. We assume that both of the initiator and the responder have mobile devices
with a 2.3 GHz CPU, e.g., Nexus 5 announced in 2013. This smart phone supports both
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Bluetooth 4.0 and dual frequency Wi-Fi. We use Eclipse to implement the simulation code and
it was written in Java. We perform the efficiency simulation and comparisons between the [19],
[20] and our proposed scheme. The size of users’ attribute sets is fixed in 30 and n denotes the
number of participated responders.

Figure 2(a) and Figure 2(b) illustrate the computational cost among [19], [20] and our
scheme respectively on the initiator’s and responder’s ends. It is obvious that in [19] [20]
the computational cost increase as the number of responders grows since it is required for the
initiator to generate one group signature for each responder. Figure 2(c) shows communication
overhead comparison among [19], [20] and our proposed scheme. It is appatently that the
communication cost of [19] and [20] sharply grows as the number of responders increases from
50 to 500.

(a) Computational Cost on Initia-
tor’s End

(b) Computational Cost on Re-
sponder’s End

(c) Communication Cost

Figure 2: Computation and Communication Comparison

6 Conclusion

In this paper, a distributed multi-authority attribute-based encryption friend discovery scheme
is proposed to achieve multi-level privacy and users can easily achieve fine-grained access con-
trol. The detailed security analysis demonstrates that the scheme can resist chosen-plaintext
attack as well as collusion attack in the standard model and performs well in terms of storage,
computational and communication cost. In our future work, we will improve the scheme by
involving the functions of ciphertexts updating and revocation.
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